A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Vehicular visible light communications noise analysis and modeling. | LitMetric

Vehicular visible light communications (VVLC) is promising intelligent transportation systems technology with the utilization of light-emitting diodes. The main degrading factor for the performance of VVLC systems is noise. Traditional VVLC systems noise modeling is based on the additive white Gaussian noise assumption in the form of shot and thermal noise. In this paper, to investigate both time correlated and white noise components of the VVLC channel noise, we propose a noise analysis based on Allan variance, which provides a time-series analysis method to identify noise from the data. The results show that white noise and random walk are observed in the VVLC systems. We also propose a motion detection algorithm based on the adaptive Gaussian mixture (GM) model to generate a double Gaussian model of VVLC channel noise. We further present a study on the error performance of a VVLC system considering channel noise to be a mixture of Gaussian components. We derive the analytical expressions of probability of error for binary phase-shift keying and quadrature phase-shift keying constellations. It has been observed that, in the presence of GM noise, the system performance degrades significantly from the usual one expected in a Gaussian noise environment and becomes a function of the mixing coefficients of the GM distribution.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.485784DOI Listing

Publication Analysis

Top Keywords

noise
14
vvlc systems
12
channel noise
12
vehicular visible
8
visible light
8
light communications
8
noise analysis
8
performance vvlc
8
systems noise
8
gaussian noise
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!