In this study, a surface plasmon resonance biosensor using angular interrogation based on a black phosphorene (BP) and graphene (G) heterostructure as two-dimensional materials are designed to enhance the sensitivity of conventional biosensors. The proposed structure is composed of eight layers: FK51A coupling prism, silver (Ag) thin film as the plasmonic metal, gold (Au) nanolayer in a protective role, BP nanosheets as an evanescent field enhancer, G monolayer as an immobilization process facilitator, DNA aptamer as biorecognition element, and phosphate buffered saline as a running buffer and sensing medium. To evaluate the performance of the proposed biosensor, analytical parameters such as minimum reflectivity ( ), sensitivity, as well as the full width at half-maximum (FWHM), detection accuracy (DA), and quality factor (QF) are systematically assessed by the use of the transfer matrix method analytically and the finite-difference time-domain method numerically, to validate each other. It is observed that the structure has been optimized with 1.49 (RIU) for the coupling prism and the heterostructure / / / / thicknesses of 65/35/1/3.18/0.34 nm, respectively. It was revealed that the proposed biosensor offered the sensitivity of 356 (°/RIU), QF of 42.4 ( ), of 0.07 (a.u), FWHM of 8.3 (degree), and DA of 0.22 (unitless) and outperformed those of other results published up to now from the sensitivity point of view.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.489116 | DOI Listing |
Methods Mol Biol
January 2025
Dept of Biochemistry & Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
Bio-Layer Interferometry (BLI) is a technique that uses optical biosensing to analyze interactions between molecules. The analysis of molecular interactions is measured in real-time and does not require fluorescent tags. BLI uses disposable biosensors that come in a variety of formats to bind different ligands including biotin, hexahistidine, GST, and the Fc portion of antibodies.
View Article and Find Full Text PDFJ Appl Microbiol
January 2025
School of Basic Medicine, Jiamusi University, Jiamusi 154000, China.
Aims: The aim of this study was to identify sesamin as a Casein hydrolase P (ClpP) inhibitor and to determine whether it could attenuate the virulence of methicillin-resistant Staphylococcus aureus (MRSA).
Methods And Results: Through fluorescence resonance energy transfer (FRET) screening, a natural compound sesamin demonstrated a significant inhibitory effect on ClpP enzyme activity with an IC50 of 20.62 μg/mL.
Nanoscale Adv
January 2025
School of Electrical Engineering and Computer Science, University of Ottawa Ottawa Ontario K1N 6N5 Canada
Interference of surface plasmons has been widely utilized in optical metrology for applications such as high-precision sensing. In this paper, we introduce a surface plasmon interferometer with the potential to be arranged in arrays for parallel multiplexing applications. The interferometer features two grating couplers that excite surface plasmon polariton (SPP) waves traveling along a gold-air interface before converging at a gold nanoslit where they interfere.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China. Electronic address:
Ethnopharmacological Relevance: The rhizome of Curcuma phaeocaulis Valeton, Curcuma wenyujin Y.H. Chen & C.
View Article and Find Full Text PDFTalanta
January 2025
Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95122, Catania, Italy; INBB, Istituto Nazionale di Biostrutture e Biosistemi, Viale delle Medaglie d'Oro, 305, 00136, Roma, Italy. Electronic address:
Directly detecting biomarkers in liquid biopsy for diagnosis and personalized treatment plays a crucial role in managing cancer relapse and increasing survival rates. Typically, the standard analysis of circulating tumour DNA requires lengthy isolation, extraction, and amplification steps, leading to sample contamination, longer turnaround time and higher assay costs. Surface plasmon resonance is an emerging and promising technology for rapid and real-time dynamic biomarker monitoring in liquid biopsy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.