Efficient coupling between optical fibers and high-index-contrast silicon waveguides is essential for the development of integrated nanophotonics. Herein, a high-efficiency dual-layer grating coupler is demonstrated for vertical polarization-diversity fiber-chip coupling. The two waveguide layers are orthogonally distributed and designed for - and -polarized fiber modes, respectively. Each layer consists of two 1D stacked gratings, allowing for both perfectly vertical coupling and high coupling directionality. The gratings are optimized using the particle swarm algorithm with a preset varying trend of parameters to thin out the optimization variables. The interlayer thickness is determined to ensure efficient coupling of both polarizations. The optimized results exhibit record highs of 92% (-0.38 ) and 85% (-0.72 ) 3D finite-difference time-domain simulation efficiencies for and polarizations, respectively. The polarization-dependent loss (PDL) is below 2 dB in a 160 nm spectral bandwidth with cross talk between the two polarizations less than -24 . Fabrication imperfections are also investigated. Dimensional offsets of ±10 in etching width and ±8 nm in lateral shift are tolerated for a 1 dB loss penalty. The proposed structure offers an ultimate solution for polarization diversity coupling schemes in silicon photonics with high directionality, low PDL, and a possibility to vertically couple.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/JOSAA.487739 | DOI Listing |
Second-harmonic (SH) generation is an important way to generate short-wavelength light sources. Thin-film lithium niobate (TFLN) resonators and waveguides featuring tight light confinement are flexible to realize mode- or quasi-phase-matching (MPM or QPM) and thus efficient SH generation. Here, we report an efficient SH with an absolute conversion efficiency of 45% in a reverse-polarized double-layer TFLN waveguide.
View Article and Find Full Text PDFRecent progress in metagratings highlights the promise of high-performance wavefront engineering devices, notably for their exterior capability to steer beams with near-unitary efficiency. However, the narrow operating bandwidth of conventional metagratings remains a significant limitation. Here, we propose and experimentally demonstrate a dual-layer metagrating, incorporating enhanced interlayer couplings to realize high-efficiency and broadband anomalous reflection within the microwave frequency band.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2024
School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou 213164, Jiangsu, P. R. China.
Perovskite solar cells (PSCs) have shown great potential for reducing costs and improving power conversion efficiency (PCE). One effective method to achieve the latter is to use an all-inorganic charge transport layer (ICTL). However, traditional methods for crystallizing inorganic layers often result in the formation of a powder instead of a continuous film.
View Article and Find Full Text PDFInt J Biol Macromol
January 2024
Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China; China National Textile and Apparel Council Key Laboratory of Natural Dyes, Soochow University, Suzhou 215123, China. Electronic address:
Biomedical materials can produce high efficiency and special behavior with an integrated internal structure. It is possible that changing the structure of biomedical materials could extend and promote the application of eco-friendly and multifunctional biomaterials. However, the instantaneous formation of complex structures between tannic acid (TA) and polysaccharides is disrupted, and the reconstruction of the new porous structure becomes a key issue.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
June 2023
Efficient coupling between optical fibers and high-index-contrast silicon waveguides is essential for the development of integrated nanophotonics. Herein, a high-efficiency dual-layer grating coupler is demonstrated for vertical polarization-diversity fiber-chip coupling. The two waveguide layers are orthogonally distributed and designed for - and -polarized fiber modes, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!