Whole-genome duplication (WGD) leads to the duplication of both coding and non-coding sequences within an organism's genome, providing an abundant supply of genetic material that can drive evolution, ultimately contributing to plant adaptation and speciation. Although non-coding sequences contain numerous regulatory elements, they have been understudied compared to coding sequences. In order to address this gap, we explored the evolutionary patterns of regulatory sequences, coding sequences and transcriptomes using conserved non-coding elements (CNEs) as regulatory element proxies following the recent WGD event in opium poppy (Papaver somniferum). Our results showed similar evolutionary patterns in subgenomes of regulatory and coding sequences. Specifically, the biased or unbiased retention of coding sequences reflected the same pattern as retention levels in regulatory sequences. Further, the divergence of gene expression patterns mediated by regulatory element variations occurred at a more rapid pace than that of gene coding sequences. However, gene losses were purportedly dependent on relaxed selection pressure in coding sequences. Specifically, the rapid evolution of tissue-specific benzylisoquinoline alkaloid production in P. somniferum was associated with regulatory element changes. The origin of a novel stem-specific ACR, which utilized ancestral cis-elements as templates, is likely to be linked to the evolutionary trajectory behind the transition of the PSMT1-CYP719A21 cluster from high levels of expression solely in P. rhoeas root tissue to its elevated expression in P. somniferum stem tissue. Our findings demonstrate that rapid regulatory element evolution can contribute to the emergence of new phenotypes and provide valuable insights into the high evolvability of regulatory elements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.16466 | DOI Listing |
Front Parasitol
January 2024
Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States.
RNA-specific nucleotidyltransferases (rNTrs) add nontemplated nucleotides to the 3 end of RNA. Two noncanonical rNTRs that are thought to be poly(A) polymerases (PAPs) have been identified in the mitochondria of trypanosomes - KPAP1 and KPAP2. KPAP1 is the primary polymerase that adds adenines (As) to trypanosome mitochondrial mRNA 3 tails, while KPAP2 is a non-essential putative polymerase whose role in the mitochondria is ambiguous.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
Adenovirus-based therapies have encountered significant challenges due to host immunity, particularly from pre-existing antibodies. Many trials have struggled to evade antibody response; however, the efficiency of these efforts was limited by the diversity of antibody Fv-region recognizing multiple amino acid sequences. In this study, we developed an antibody-evading adenovirus vector by encoding a plasma-rich protein transferrin-binding domain.
View Article and Find Full Text PDFTransl Cancer Res
December 2024
Department of Pharmacy, Gansu Provincial Hospital, Lanzhou, China.
Background: N6-methyladenosine (mA)-mediated epitranscriptomic pathway has been shown to contribute to chemoresistance and radioresistance. Our previous work confirmed the defense of lycorine against tamoxifen resistance of breast cancer (BC) through targeting HOXD antisense growth-associated long non-coding RNA (HAGLR). Whereas, the precise regulation among them remains to be elucidated.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China.
Background: Emerging evidence shows that small nucleolar RNA (snoRNA), a type of highly conserved non-coding RNA, is involved in tumorigenesis and aggressiveness. However, the roles of snoRNAs in regulating alternative splicing crucial for cancer progression remain elusive.
Methods: High-throughput RNA sequencing and comprehensive analysis were performed to identify crucial snoRNAs and downstream alternative splicing events.
BMC Plant Biol
January 2025
College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
Background: The confused taxonomic classification of Crucigenia is mainly inferred through morphological evidence and few nuclear genes and chloroplast genomic fragments. The phylogenetic status of C. quadrata, as the type species of Crucigenia, remains considerably controversial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!