Scavenger receptor endocytosis controls apical membrane morphogenesis in the airways.

Elife

Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.

Published: September 2023

The acquisition of distinct branch sizes and shapes is a central aspect in tubular organ morphogenesis and function. In the airway tree, the interplay of apical extracellular matrix (ECM) components with the underlying membrane and cytoskeleton controls tube elongation, but the link between ECM composition with apical membrane morphogenesis and tube size regulation is elusive. Here, we characterized Emp (epithelial membrane protein), a CD36 homolog belonging to the scavenger receptor class B protein family. mutant embryos fail to internalize the luminal chitin deacetylases Serp and Verm at the final stages of airway maturation and die at hatching with liquid filled airways. Emp localizes in apical epithelial membranes and shows cargo selectivity for LDLr-domain containing proteins. mutants also display over elongated tracheal tubes with increased levels of the apical proteins Crb, DE-cad, and phosphorylated Src (p-Src). We show that Emp associates with and organizes the βH-Spectrin cytoskeleton and is itself confined by apical F-actin bundles. Overexpression or loss of its cargo protein Serp lead to abnormal apical accumulations of Emp and perturbations in p-Src levels. We propose that during morphogenesis, Emp senses and responds to luminal cargo levels by initiating apical membrane endocytosis along the longitudinal tube axis and thereby restricts airway elongation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10564452PMC
http://dx.doi.org/10.7554/eLife.84974DOI Listing

Publication Analysis

Top Keywords

apical membrane
12
scavenger receptor
8
apical
8
membrane morphogenesis
8
membrane
5
emp
5
receptor endocytosis
4
endocytosis controls
4
controls apical
4
morphogenesis
4

Similar Publications

The oncogenes yes-associated protein () and transcriptional coactivator with PDZ-binding motif () are potent liver oncogenes. Because gene mutations cannot fully explain their nuclear enrichment, we aim to understand which mechanisms cause activation in liver cancer cells. The combination of proteomics and functional screening identified numerous apical cell polarity complex proteins interacting with YAP and TAZ.

View Article and Find Full Text PDF

Saffron ( L.), a perennial geophyte from the Iridaceae family, blooms in autumn and thrives in Mediterranean-like climates. It is highly valued for its therapeutic and commercial uses.

View Article and Find Full Text PDF

Intracellular morphological apical-basal polarity, regulated by conserved polarity proteins, plays a crucial role in cell migration and metastasis. In this study, using a genetically encoded Förster resonance energy transfer (FRET) biosensor to visually present the spatiotemporal stress state between the lipid rafts on the membrane and the linked actin, we first provide the evidence for the existence of intrinsic apical-basal stress polarity in tumor cells and demonstrate that this polarity is a prerequisite for the formation of flow-induced front-back stress polarity. Interestingly, our study revealed that the front-back stress polarity disappeared upon the disruption of intrinsic apical-basal stress discrepancy, resulting in a large attenuated cell migration activity reduced from 76.

View Article and Find Full Text PDF

Introduction: Breast cancer resistance protein (BCRP) is an efflux membrane transporter that controls the pharmacokinetics of a large number of drugs. Its activity may change when taking some endo- and exogenous substances, thus making it a link in drug interactions.

Aim: The aim of the study was to develop a methodology for testing drugs for belonging to BCRP substrates and inhibitors in vitro.

View Article and Find Full Text PDF

Plastic nanoparticle toxicity is accentuated in the immune-competent inflamed intestinal tri-culture cell model.

Nanotoxicology

January 2025

Department of Pharmaceutical Sciences & Administration, School of Pharmacy, Westbrook College of Health Professions, University of New England, Portland, Maine, USA.

Important cell-based models of intestinal inflammation have been advanced in hopes of predicting the impact of nanoparticles on disease. We sought to determine whether a high level and extended exposure of nanoplastic might result in the added intestinal inflammation caused by nanoplastic reported in a mouse model of irritable bowel disease. The cell models consist of a Transwell©-type insert with a filter membrane upon which lies a biculture monolayer of Caco-2 and HT29-MTX-E12 made up the barrier cells (apical compartment).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!