Objective: The objective of this study was to estimate strains in the human brain in regulatory, research, and due care frontal crashes by simulating those impacts. In addition, brain strain simulations were estimated for belted human volunteer tests and in impacts between two players in National Football League (NFL), some with no injury and some with mild Traumatic Brain Injuries (mTBI).
Methods: The brain strain responses were determined using version 5 of the Global Human Body Modeling Consortium (GHBMC) 50th percentile human brain model. One hundred and sixty simulations with the brain model were conducted using rotational velocities and accelerations of Anthropomorphic Test Devices (ATD's) or those of human volunteers in sled or crash tests, as inputs to the model and strain related responses like Maximum Principal Strains (MPS) and Cumulative Strain Damage Measure (CSDM) in various regions of the brain were monitored. The simulated vehicle tests ranged from sled tests at 24 and 32 kph delta-V with three-point belts without airbags to full scale crash and sled tests at 56 kph and a series of Research Mobile Deformable Barrier (RMDB) tests described in Prasad et al.
Results: The severity of rotational input into the model as represented by BrIC, averaged between 0.5 and 1.2 for the various test conditions, and as high as 1.5 for an individual case. The MPS responses for the various test conditions averaged between 0.28 and 0.86 and as high as 1.3 in one test condition. The MPS responses in the brain for volunteers, low velocity sled, and NCAP tests were similar to those in the no-mTBI group in the NFL cases and consistent with real world accident data. The MPS responses of the brain in angular crash and sled tests were similar to those in the mTBI group.
Conclusions: The brain strain estimations do not indicate the likelihood of severe-to-fatal brain injuries in the crash environments studied in this paper. However, using the risk functions associated with BrIC, severe-to-fatal brain injuries (AIS+) are predicted in several environments in which they are not observed or expected.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15389588.2023.2255913 | DOI Listing |
J Neurosci Res
January 2025
Department of Psychology, University of Regensburg, Regensburg, Germany.
Anxiety and depression disorders show high prevalence rates, and stress is a significant risk factor for both. However, studies investigating the interplay between anxiety, depression, and stress regulation in the brain are scarce. The present manuscript included 124 law students from the LawSTRESS project.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, Georgia, USA.
Mycoplasma (Class: Mollicutes) contamination in cell cultures is a universal concern for research laboratories. Some estimates report contamination in up to 35% of continuous cell lines. Various commercial antibiotic treatments can successfully decontaminate clean cell lines ; however, decontamination of bacterial cultures remains challenging.
View Article and Find Full Text PDFChaos
January 2025
Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
Generally, epilepsy is considered as abnormally enhanced neuronal excitability and synchronization. So far, previous studies on the synchronization of epileptic brain networks mainly focused on the synchronization strength, but the synchronization stability has not yet been explored as deserved. In this paper, we propose a novel idea to construct a hypergraph brain network (HGBN) based on phase synchronization.
View Article and Find Full Text PDFMov Disord Clin Pract
January 2025
Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
J Virol
January 2025
Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
Unlabelled: Respiratory and encephalitic virus infections represent a significant risk to public health globally. Detailed investigations of immunological responses and disease outcomes during sequential virus infections are rare. Here, we define the impact of influenza virus infection on a subsequent virus encephalitis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!