The integration of on-chip biophysical cytometry downstream of microfluidic enrichment for inline monitoring of phenotypic and separation metrics at single-cell sensitivity can allow for active control of separation and its application to versatile sample sets. We present integration of impedance cytometry downstream of cell separation by deterministic lateral displacement (DLD) for enrichment of activated macrophages from a heterogeneous sample, without the problems of biased sample loss and sample dilution caused by off-chip analysis. This required designs to match cell/particle flow rates from DLD separation into the confined single-cell impedance cytometry stage, the balancing of flow resistances across the separation array width to maintain unidirectionality, and the utilization of co-flowing beads as calibrated internal standards for inline assessment of DLD separation and for impedance data normalization. Using a heterogeneous sample with un-activated and activated macrophages, wherein macrophage polarization during activation causes cell size enlargement, on-chip impedance cytometry is used to validate DLD enrichment of the activated subpopulation at the displaced outlet, based on the multiparametric characteristics of cell size distribution and impedance phase metrics. This hybrid platform can monitor separation of specific subpopulations from cellular samples with wide size distributions, for active operational control and enhanced sample versatility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10497222PMC
http://dx.doi.org/10.1002/admt.202201463DOI Listing

Publication Analysis

Top Keywords

impedance cytometry
16
cytometry downstream
12
downstream cell
8
separation
8
cell separation
8
separation deterministic
8
deterministic lateral
8
lateral displacement
8
dld enrichment
8
enrichment activated
8

Similar Publications

Microfluidic impedance flow cytometer leveraging virtual constriction microchannel and its application in leukocyte differential.

Microsyst Nanoeng

December 2024

State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.

Microfluidic impedance flow cytometry has been widely used in leukocyte differential and counting, but it faces a bottleneck due to the trade-off between impedance detection throughput and sensitivity. In this study, a microfluidic impedance flow cytometer based on a virtual constriction microchannel was reported, in which the virtual constriction microchannel was constructed by crossflow of conductive sample and insulated sheath fluids with underneath micro-electrodes for impedance measurements. Compared to conventional mechanical constriction microchannels, this virtual counterpart could effectively avoid direct physical contact between cells and the microchannel walls to maintain high throughputs, and significantly reduce the volume of the impedance detection region for sensitivity improvements.

View Article and Find Full Text PDF

Arginine vasopressin (AVP) has disparate impacts on immune responses by divergent receptors on cells including DCs. This study was conducted with the aim of investigating the impact of AVP on the maturation and expression of the inhibitory immune checkpoint molecules in tolerogenic monocyte-derived DCs. CD14 marker was used to separate monocytes from peripheral blood mononuclear cells (PBMCs) by MACS method.

View Article and Find Full Text PDF

Objectives: To perform a model-based cost-effectiveness evaluation of a rapid antimicrobial susceptibility test.

Design: A Markov model of a cohort of hospital inpatients with urinary tract infection (with inpatient numbers based on national administrative data from 1 April 2017 to 31 March 2019).

Setting: Urinary tract infections (UTI) in acute National Health Service (NHS) Trusts in England, from the perspective of the NHS Healthcare system, at a national level.

View Article and Find Full Text PDF

Single-cell electro-mechanical shear flow deformability cytometry.

Microsyst Nanoeng

November 2024

School of Electronics and Computer Science, and Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.

Article Synopsis
  • The study focuses on a new microfluidic technique that uses non-contact shear flow deformability cytometry to analyze the electrical and mechanical properties of individual cells swiftly.
  • The method involves cells being elongated by shear forces while their electrical impedance is measured to assess both shape change and dielectric properties.
  • The technique shows a strong correlation between optical and electrical measurements and can process around 100 cells per second without needing complex setups like sheath flow or high-speed imaging.*
View Article and Find Full Text PDF

This work presents an innovative all-electrical platform for selective single-particle manipulation. The platform combines microfluidic impedance cytometry for label-free particle characterization and dielectrophoresis for contactless multi-way particle separation. The microfluidic chip has a straightforward coplanar electrode layout and no particle pre-focusing mechanism is required.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!