Idiopathic Rem sleep Behavior Disorder (iRBD) is a significant biomarker for the development of alpha-synucleinopathies, such as Parkinson's disease (PD) or Dementia with Lewy bodies (DLB). Methods to identify patterns in iRBD patients can help in the prediction of the future conversion to these diseases during the long prodromal phase when symptoms are non-specific. These methods are essential for disease management and clinical trial recruitment. Brain PET scans with 18F-FDG PET radiotracers have recently shown promise, however, the scarcity of longitudinal data and PD/DLB conversion information makes the use of representation learning approaches such as deep convolutional networks not feasible if trained in a supervised manner. In this work, we propose a self-supervised learning strategy to learn features by comparing the brain hemispheres of iRBD non-convertor subjects, which allows for pre-training a convolutional network on a small data regimen. We introduce a loss function called hemisphere dissimilarity loss (HDL), which extends the Barlow Twins loss, that promotes the creation of invariant and non-redundant features for brain hemispheres of the same subject, and the opposite for hemispheres of different subjects. This loss enables the pre-training of a network without any information about the disease, which is then used to generate full brain feature vectors that are fine-tuned to two downstream tasks: follow-up conversion, and the type of conversion (PD or DLB) using baseline 18F-FDG PET. In our results, we find that the HDL outperforms the variational autoencoder with different forms of inputs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10496490PMC
http://dx.doi.org/10.1109/isbi53787.2023.10230560DOI Listing

Publication Analysis

Top Keywords

hemisphere dissimilarity
8
self-supervised learning
8
18f-fdg pet
8
brain hemispheres
8
brain
5
brain hemisphere
4
dissimilarity self-supervised
4
learning approach
4
approach alpha-synucleinopathies
4
alpha-synucleinopathies prediction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!