Inter-animal communication allows signals released by an animal to be perceived by others. Scent-marking is the primary mode of such communication in giant pandas (). Signal detection theory propounds that animals choose the substrate and location of their scent marks so that the signals released are transmitted more widely and last longer. We believe that pandas trade-off scent-marking because they are an energetically marginal species and it is costly to generate and mark chemical signals. Existing studies only indicate where pandas mark more frequently, but their selection preferences remain unknown. This study investigates whether the marking behavior of pandas is consistent with signal detection theory. Feces count, reflecting habitat use intensity, was combined with mark count to determine the selection preference for marking. The results showed that pandas preferred to mark ridges with animal trails and that most marked tree species were locally dominant. In addition, marked plots and species were selected for lower energy consumption and a higher chance of being detected. Over 90% of the marks used were the longest-surviving anogenital gland secretion marks, and over 80% of the marks were oriented toward animal trails. Our research demonstrates that pandas go out of their way to make sure their marks are found. This study not only sheds light on the mechanisms of scent-marking by pandas but also guides us toward more precise conservation of the panda habitat.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10495809 | PMC |
http://dx.doi.org/10.1002/ece3.10517 | DOI Listing |
Med Phys
January 2025
Department of Engineering Physics, Tsinghua University, Beijing, China.
Background: X-ray grating-based dark-field imaging can sense the small angle scattering caused by object's micro-structures. This technique is sensitive to the porous microstructure of lung alveoli and has the potential to detect lung diseases at an early stage. Up to now, a human-scale dark-field CT (DF-CT) prototype has been built for lung imaging.
View Article and Find Full Text PDFChempluschem
January 2025
Jiangsu Agri-animal Husbandry Vocational College, Department of Pharmacy, CHINA.
With enrichment of tetracycline (TC) in ecosystems, its accurate detection has become a major concern. Noble-metal nano-particles have attracted great interest as potential materials for sensing applications because of their remarkable electrical properties and adaptability. Herein, a novel electro-chemical detection technique based on carbon nano-tubes (CNTs) as the support material is developed to detect TC with high precision.
View Article and Find Full Text PDFChembiochem
January 2025
Xinzhou Normal University, Department of Chemistry, CHINA.
As one of the essential components of reactive oxygen species (ROS), peroxynitrite (ONOO-) plays an indispensable role in redox homeostasis and signal transduction processes, and its deviant levels are associated with numerous clinical diseases. Therefore, accurate and rapid detection of intracellular ONOO- levels is crucial for revealing its role in physiological and pathological processes. Herein, we constructed a ratiometric fluorescent probe to detect ONOO- levels in biological systems.
View Article and Find Full Text PDFAnal Chem
January 2025
Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China.
Nanofluidic iontronics, including the field-effect ionic diode (FE-ID) and field-effect ionic transistor (FE-IT), represent emerging nanofluidic logic devices that have been employed in sensitive analyses. Making analyte recognitions in predefined nanofluidic devices has been verified to improve the sensitivity and selectivity using a single ionic signal, such as ionic current amplification, rectification, and Coulomb blockade. However, the detection of analytes in complex systems generally necessitates more diverse signals beyond just ionic currents.
View Article and Find Full Text PDFBioelectrochemistry
January 2025
School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China. Electronic address:
A ratiometric electrochemical aptasensor was developed for ultra-sensitive detection of cortisol using aptamer (Apt) as recognition element, methylene blue (MB) as signal probe, and zirconium metal-organic framework (Zr-MOF) as carrier loaded with abundant MB for signal amplification. The carboxylated multi-walled carbon nanotubes (cMWCNTs)-modified Au electrode showed excellent electrochemical performance to immobilize complementary DNA (cDNA) for hybridizing with MB@Zr-MOF-Apt via amide bonds. In the presence of cortisol, it would compete with cDNA for binding the Apt, resulting in the detachment of MB@Zr-MOF-Apt complex from the electrode surface, and the electrochemical signal of MB was decreased, while that of [Fe(CN)] was basically unchanged.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!