Phase-shift droplets provide a flexible and dynamic platform for therapeutic and diagnostic applications of ultrasound. The spatiotemporal response of phase-shift droplets to focused ultrasound, via the mechanism termed acoustic droplet vaporization (ADV), can generate a range of bioeffects. Although ADV has been used widely in theranostic applications, ADV-induced bioeffects are understudied. Here, we integrated ultra-high-speed microscopy, confocal microscopy, and focused ultrasound for real-time visualization of ADV-induced mechanics and sonoporation in fibrin-based, tissue-mimicking hydrogels. Three monodispersed phase-shift droplets-containing perfluoropentane (PFP), perfluorohexane (PFH), or perfluorooctane (PFO)-with an average radius of ∼6 m were studied. Fibroblasts and tracer particles, co-encapsulated within the hydrogel, were used to quantify sonoporation and mechanics resulting from ADV, respectively. The maximum radial expansion, expansion velocity, induced strain, and displacement of tracer particles were significantly higher in fibrin gels containing PFP droplets compared to PFH or PFO. Additionally, cell membrane permeabilization significantly depended on the distance between the droplet and cell (), decreasing rapidly with increasing . Significant membrane permeabilization occurred when was smaller than the maximum radius of expansion. Both ultra-high-speed and confocal images indicate a hyper-local region of influence by an ADV bubble, which correlated inversely with the bulk boiling point of the phase-shift droplets. The findings provide insight into developing optimal approaches for therapeutic applications of ADV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10497320PMC
http://dx.doi.org/10.1063/5.0159661DOI Listing

Publication Analysis

Top Keywords

phase-shift droplets
12
mechanics sonoporation
8
acoustic droplet
8
droplet vaporization
8
focused ultrasound
8
tracer particles
8
membrane permeabilization
8
adv
5
real-time spatiotemporal
4
spatiotemporal characterization
4

Similar Publications

We present experiments involving oscillating droplets in aqueous cyclodextrin-surfactant solutions. In these experiments, α-cyclodextrin (αCD) and anionic surfactants exhibit remarkable viscoelasticity at the liquid/air interface, with dilatational modulus varying across orders of magnitude. This rheological response depends on the concentrations of different complexes in the solution, particularly of the 2 : 1 inclusion complexes formed by two αCD molecules (αCD), and one surfactant (S).

View Article and Find Full Text PDF

Perfluorocarbon (PFC) droplets represent a novel class of phase-shift contrast agent with promise in applications in biomedical and bioengineering fields. PFC droplets undergo a fast liquid-gas transition upon exposure to acoustic or optical triggering, offering a potential adaptable and versatile tool as contrast agent in diagnostic imaging and localized drug delivery vehicles in therapeutics systems. In this paper, we utilize advanced imaging techniques to investigate ultra-high-speed inertial dynamics and rectified quasi-static (low-speed) diffusion evolution of optically induced PFC droplet vaporization within three different hydrogels, each of different concentrations, examining effects such as droplet size and PFC core on bubble dynamics and material viscoelastic properties.

View Article and Find Full Text PDF

Hydrogels can improve the delivery of mesenchymal stromal cells (MSCs) by providing crucial biophysical cues that mimic the extracellular matrix. The differentiation of MSCs is dependent on biophysical cues like stiffness and viscoelasticity, yet conventional hydrogels cannot be dynamically altered after fabrication and implantation to actively direct differentiation. We developed a composite hydrogel, consisting of type I collagen and phase-shift emulsion, where osteogenic differentiation of MSCs can be non-invasively modulated using ultrasound.

View Article and Find Full Text PDF

Acoustically responsive scaffolds: Unraveling release kinetics and mechanisms for sustained, steady drug delivery.

J Control Release

October 2024

Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA. Electronic address:

Hydrogels can serve as local drug delivery depots that protect the biological activity of labile therapeutics. However, drug release from conventional hydrogels is typically rapid, which is not ideal for many therapeutic agents. We developed a composite hydrogel that enables sustained drug release in response to ultrasound.

View Article and Find Full Text PDF

Acoustic droplet vaporization (ADV) offers a dynamic approach for generating bubbles on demand, presenting new possibilities in biomedical applications. Although ADV has been investigated in various biomedical applications, its potential in tissue characterization remains unexplored. Here, we investigated the effects of surrounding media on the radial dynamics and acoustic emissions of ADV bubbles using theoretical and experimental methodologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!