Background: Dose modification of renally secreted drugs in patients with chronic kidney disease (CKD) has relied on serum creatinine concentration as a biomarker to estimate glomerular filtration (GFR) under the assumption that filtration and secretion decline in parallel. A discrepancy between actual renal clearance and predicted renal clearance based on GFR alone is observed in severe CKD patients with tenofovir, a compound secreted by renal OAT1/3. Uremic solutes that inhibit OAT1/3 may play a role in this divergence.
Methods: To examine the impact of transporter inhibition by uremic solutes on tenofovir renal clearance, we determined the inhibitory potential of uremic solutes hippuric acid, indoxyl sulfate, and p-cresol sulfate. The inhibition parameters (IC) were incorporated into a previously validated mechanistic kidney model; simulated renal clearance and plasma PK profile were compared to data from clinical studies.
Results: Without the incorporation of uremic solute inhibition, the PBPK model failed to capture the observed data with an absolute average fold error (AAFE) > 2. However, when the inhibition of renal uptake transporters and uptake transporters in the slow distribution tissues were included, the AAFE value was within the pre-defined twofold model acceptance criterion, demonstrating successful model extrapolation to CKD patients.
Conclusion: A PBPK model that incorporates inhibition by uremic solutes has potential to better predict renal clearance and systemic disposition of secreted drugs in patients with CKD. Ongoing research is warranted to determine if the model can be expanded to include other OAT1/3 substrate drugs and to evaluate how these findings can be translated to clinical guidance for drug selection and dose optimization in patients with CKD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11095-023-03594-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!