Triboelectric charge transfer is complex and depends on contact properties such as material composition and contact area, as well as environmental factors including humidity, temperature, and air pressure. Saturation surface charge density on particles is inversely dependent on particle size and the number of nearby particles. Here we show that electrical breakdown of air is the primary cause of triboelectric charge saturation on single and multiple electrically insulating particles, which explains the inverse dependence of surface charge density on particle size and number of particles. We combine computational simulations with experiments under controlled humidity and pressure. The results show that the electric field contribution of multiple particles causes electrical breakdown of air, reducing saturation surface charge density for greater numbers of particles. Furthermore, these results show that particles can be discharged in a low pressure environment, yielding opportunities for improved industrial powder flows and dust mitigation from surfaces.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499910PMC
http://dx.doi.org/10.1038/s41598-023-42265-0DOI Listing

Publication Analysis

Top Keywords

triboelectric charge
12
surface charge
12
charge density
12
charge saturation
8
saturation single
8
single multiple
8
particles
8
insulating particles
8
saturation surface
8
particle size
8

Similar Publications

Self-powered devices for human motion monitoring and energy harvesting have garnered widespread attention in recent research. In this work, we designed a honeycomb-structured triboelectric nanogenerator (H-TENG) using polyester cloth and Teflon tape, with aluminum foil as the conductive electrode. This design leverages the large surface area and flexibility of textiles, resulting in significant performance improvements.

View Article and Find Full Text PDF

In recent years, liquid-solid triboelectric nanogenerators (L-S TENGs) have been rapidly developed in the field of liquid energy harvesting and self-powered sensing. This is due to a number of advantages inherent in the technology, including the low cost of fabricated materials, structural diversity, high charge-energy conversion efficiency, environmental friendliness, and a wide range of applications. As liquid phase dielectric materials typically used in L-S TENG, a variety of organic and inorganic single-phase liquids, including distilled water, acidic solutions, sodium chloride solutions, acetone, dimethyl sulfoxide, and acetonitrile, as well as paraffinic oils, have been used in experiments.

View Article and Find Full Text PDF

The triboelectric nanogenerator (TENG) has emerged as a promising technology for efficiently converting ambient mechanical energy into electrical energy. Among various designs, the disk-based rotational TENG has demonstrated significant potential, as it can continuously harvest energy in a sliding mode via a grating mechanism. However, horizontal mechanical energy is more common than rotational energy in many practical applications.

View Article and Find Full Text PDF

The effective collection of interfacial tribo-charges and an increase in load voltage are two essential factors that improve the output energy of triboelectric nanogenerators. However, some tribo-charges are hardly collected through one or multiple integrated side electrodes based on corona discharge, and their load voltages are limited by air breakdown in adjacent electrodes. In this study, a dynamic quasi-dipole potential distribution model is proposed to systematically reveal the mechanisms of interfacial tribo-charge loss.

View Article and Find Full Text PDF

Modification of the dielectric friction layer materials is an ideal way to enhance the output performance of a triboelectric nanogenerator (TENG), but current research mostly focuses on the metal-polymer or metal-SiO materials. In this work, we constructed different TENG models based on polymer C F -SiO electret materials, and the electronic properties of the different contact surfaces were investigated using first principles. We found that the charge transfer in C F -SiO materials occurred only at the contact interface, and it was partially affected by the terminal atoms near the SiO interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!