The surge of antibiotic resistance in calls for novel drugs that attack new targets. Developing antimicrobial peptides (AMPs) or antivirulence agents (AvAs) is a promising strategy to tackle this challenge. However, AMPs, which kill bacteria by disrupting cell membranes, suffer from low stability and high synthesis cost, while AvAs, which inhibit toxin secretion, have relatively poor bactericidal activity. Here, to address their respective shortcomings, we combined these two different antibacterial activities on the same molecular scaffold and developed a Ru-based metalloantibiotic, termed . Notably, exerted remarkable bactericidal activity (MIC = 460 nM) and attenuated bacterial virulence as well. Mechanistic studies demonstrated that had two independent targets: CcpA and bacterial membrane integrity. Based on its dual mechanism of action, effectively overcame resistance and showed high efficacy in a mouse infection model against . This study provides a promising approach to confronting bacterial infections.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.3c01282DOI Listing

Publication Analysis

Top Keywords

bactericidal activity
8
coupling virulence-targeting
4
virulence-targeting moiety
4
moiety ru-based
4
ru-based amp
4
amp mimics
4
mimics efficiently
4
efficiently improved
4
improved anti-infective
4
anti-infective potency
4

Similar Publications

Fortimicins (FTMs) are fortamine-containing aminoglycoside antibiotics (AGAs) produced by M. olivasterospora DSM 43868 with excellent bactericidal activities against a wide range of Enterobacteriaceae and synergistic activity against multidrug-resistant (MDR) pathogens. Fortimicin-A (FTM-A), the most active member of FTMs, has the lowest susceptibility to inactivation by the aminoglycoside modifying enzymes (AMEs).

View Article and Find Full Text PDF

The antimicrobial peptide (AMP) circularized bacteriocin enterocin AS-48 produced by sp. exhibits broad-spectrum antibacterial activity via dimer insertion into the plasma membrane to form membrane pore structures, compromising membrane integrity and leading to bactericidal activity. A specific alpha-helical region of enterocin AS-48 has been shown to be responsible for the membrane-penetrating activity of the peptide.

View Article and Find Full Text PDF

This study aimed to evaluate the antimicrobial effectiveness of cumin seed essential oil (CEO) after encapsulation in chickpea protein-maltodextrin matrix by spray drying and to provide insight into potential use as a natural ingredient in meat-based products. The surface morphology results of encapsulated CEO showed the dispersion in the wall material matrix, and the observed specific common peaks in the FT-IR spectra of encapsulated and non-encapsulated CEO proved the successful encapsulation. The antibacterial activity of non-encapsulated CEO against BC1402, ATCC 27853, Typhimurium ATCC 0402, ATCC 25923 were first evaluated by disc diffusion assay.

View Article and Find Full Text PDF

Coconut oil is eatable oil with many nutritional and cosmetic applications. In this investigation coconut oil was subjected to 0 to 5 L/min of ozone for 3 h and the chemical composition of both crude and ozonized oil was valued via Gas Chromatography-Mass Spectrometry (GC-MS). Some biological tests were done including antibacterial action versus Helicobacter pylori, anti-biofilm activity versus H.

View Article and Find Full Text PDF
Article Synopsis
  • The rise of multidrug-resistant bacteria highlights the urgent need for new antimicrobial medicines, leading to the investigation of antimicrobial peptoids as potential alternatives.
  • Thirteen peptoid analogues were synthesized with varying alkyl side chains to analyze their antibacterial properties, and only one, called Tosyl-Octyl-Peptoid (TOP), showed significant broad-spectrum bactericidal activity.
  • TOP effectively kills bacteria in both dividing and non-dividing states, demonstrating promising minimum inhibitory concentrations and a high selectivity ratio, suggesting its potential as a future therapeutic option against resistant infections.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!