Following recent regulatory approvals for anti-Alzheimer's monoclonal antibodies, this paper considers the contemporary role of cognitivism in defining the ontological commitments of dementia research, as well as movements away from cognitivism under the umbrella of 4E cognitive science. 4E cognitive theories, extending cognition into bodies, their environs, and active relations between the two, share potentially fruitful affinities with new materialisms which focus on the co-constitution of matter in intra-action. These semi-overlapping conceptual positions furnish some opportunity for an ontological alternative to longstanding cognitivist commitments, particularly to the isolated brain as a material catalyst for commercial interventions. After outlining mainstream cognitivism and its shortcomings, I explore 4E and new materialism as possibly transformative conceptual schemas for dementia research, a field for which cognitivist imaginings of cognitive decline in later life have profound and often regrettable ramifications. To realise this new materialist dementia, I sketch out a cognitive ontology based on Barad's agential realism. This facilitates a reassessment of the biggest conundrum in dementia research - the lack of neat correlation between (apparently material) neuropathology and (apparently immaterial) cognitive impairment - alongside the continued failure of efforts to develop effective interventions. It also gives social researchers working on cognitive decline in later life an opportunity to reappraise the nature of social science as a response to such phenomena. If cognition and cognitive ageing are reimagined as an emergent characteristic of intra-acting matter, then new materialist social science might be at least as conducive to salutogenic interventions as the neuropsychiatric technoscience that dominates the contemporary dementia research economy despite continual failures. I argue that a new materialist cognitive ontology could help us think beyond an ageing cognitivism and, by extension, beyond the Alzheimer conundrum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jaging.2023.101155 | DOI Listing |
PLoS Comput Biol
January 2025
Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
Numerous studies of the human brain supported by experimental results from rodent and cell models point to a central role for intracellular amyloid beta (Aβ) in the onset of Alzheimer's disease (AD). In a rat model used to study AD, it was recently shown that in layer II neurons of the anteriolateral entorhinal cortex expressing high levels of the glycoprotein reelin (Re+alECLII neurons), reelin and Aβ engage in a direct protein-protein interaction. If reelin functions as a sink for intracellular Aβ and if the binding to reelin makes Aβ physiologically inert, it implies that reelin can prevent the neuron from being exposed to the harmful effects typically associated with increased levels of oligomeric Aβ.
View Article and Find Full Text PDFMov Disord
December 2024
Department of Neuromuscular Disease, Queen Square Institute of Neurology, UCL, London, UK.
Background: The identification of a heterozygous exonic GGC repeat expansion in ZFHX3 underlying spinocerebellar ataxia type 4 (SCA4) has solved a 25-year diagnostic conundrum. We used adaptive long-read sequencing to decipher the pathogenic expansion in the index Utah family and an unrelated family from Iowa of Swedish ancestry. Contemporaneous to our discovery, other groups identified the same repeat expansion in affected individuals from Utah, Sweden, and Germany, highlighting the current pivotal time for detection of novel repeat expansion disorders.
View Article and Find Full Text PDFIntroduction: Deregulation of the cerebrovascular system has been linked to neurodegeneration, part of a putative causal pathway into etiologies such as Alzheimer's disease (AD). In medical imaging, time-of-flight magnetic resonance angiography (TOF-MRA) and perfusion MRI are the most common modalities used to study this system. However, due to lack of resources, many large-scale studies of AD are not acquiring these images; this creates a conundrum, as the lack of evidence limits our knowledge of the interaction between the cerebrovascular system and AD.
View Article and Find Full Text PDFJ Alzheimers Dis
December 2024
CEO, R&R Perez LLC, El Paso, TX, USA.
A conundrum in Alzheimer's disease (AD) is why the long-term use of acetylcholinesterase (AChE) inhibitors, intended for treatment of dementia, results in slowing neurodegeneration in the cholinergic basal forebrain, hippocampus, and cortex. The phospho-tau cascade hypothesis presented here attempts to answer that question by unifying three hallmark features of AD into a specific sequence of events. It is proposed that the hyperphosphorylation of tau protein leads to the AD-associated deficit of nerve growth factor (NGF), then to atrophy of the cholinergic basal forebrain and dementia.
View Article and Find Full Text PDFNat Rev Neurol
March 2024
National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary.
A growing body of evidence has demonstrated a link between Alzheimer disease (AD) and epilepsy. Late-onset epilepsy and epileptiform activity can precede cognitive deterioration in AD by years, and its presence has been shown to predict a faster disease course. In animal models of AD, amyloid and tau pathology are linked to cortical network hyperexcitability that precedes the first signs of memory decline.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!