Gait asymmetry is a predictor of fall risk and may contribute to increased falls during pregnancy. Previous work indicates that pregnant women experience asymmetric joint laxity and pelvic tilt during standing and asymmetric joint moments and angles during walking. How these changes translate to other measures of gait asymmetry remains unclear. Thus, the purpose of this case study was to determine the relationships between pregnancy progression, subsequent pregnancies, and gait asymmetry. Walking data were collected from an individual during 2 consecutive pregnancies during the second and third trimesters and 6 months postpartum of her first pregnancy and the first, second, and third trimesters and 6 months postpartum of her second pregnancy. Existing asymmetries in step length, anterior-posterior (AP) impulses, AP peak ground reaction forces, lateral impulses, and joint work systematically increased as her pregnancy progressed. These changes in asymmetry may be attributed to pelvic asymmetry, leading to asymmetric hip flexor and extensor length, or due to asymmetric plantar flexor strength, as suggested by her ankle work asymmetry. Relative to her first pregnancy, she had greater asymmetry in step length, step width, braking AP impulse, propulsive AP impulse, and peak braking AP ground reaction force during her second pregnancy, which may have resulted from increased joint laxity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1123/jab.2023-0013 | DOI Listing |
Neurorehabil Neural Repair
January 2025
Department of Human Movement Science, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.
Background: How gait changes during the early stages of stoke rehabilitation, and which patient characteristics are associated with these changes is still largely unknown.
Objective: he first objective was to describe the changes in gait during stroke rehabilitation. Secondly, we determined how various patient characteristics were associated with the rate of change of gait over time.
Sensors (Basel)
December 2024
Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
The analysis of running gait has conventionally taken place within an expensive and restricted laboratory space, with wearable technology offering a practical, cost-effective, and unobtrusive way to examine running gait in more natural environments. This pilot study presents a wearable inertial measurement unit (IMU) setup for the continuous analysis of running gait during an outdoor parkrun (i.e.
View Article and Find Full Text PDFCureus
December 2024
Department of Rehabilitation, Musashigaoka Hospital, Kumamoto, JPN.
Gait asymmetry in post-stroke patients is an important gait characteristic that is associated with their balance control, inefficiency, and risks of musculoskeletal injury to the non-paretic lower limb and falling. Unfortunately, most stroke patients retain an asymmetrical gait pattern, even though their gait independence and gait speed improve. We describe the clinical course of a subacute stroke patient who achieved a symmetrical gait at discharge after undergoing both gait training with orthoses and robot-assisted gait training from the early intervention phase.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Engineering and Industrial Design, Magdeburg-Stendal University of Applied Sciences, 39110 Magdeburg, Germany.
Inappropriate, excessive, or overly strenuous training of sport horses can result in long-term injury, including the premature cessation of a horse's sporting career. As a countermeasure, this study demonstrates the easy implementation of a biomechanical load monitoring system consisting of five commercial, multi-purpose inertial sensor units non-invasively attached to the horse's distal limbs and trunk. From the data obtained, specific parameters for evaluating gait and limb loads are derived, providing the basis for objective exercise load management and successful injury prevention.
View Article and Find Full Text PDFBiomechanical gait impairments, such as reduced paretic propulsion, are common post-stroke. Studies have used biofeedback to increase paretic propulsion and reduce propulsion asymmetry, but it is unclear if these changes impact overall gait asymmetry. There is an implicit assumption that reducing propulsion asymmetry will improve overall gait symmetry, as paretic propulsion has been related to numerous biomechanical impairments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!