Background: Leptin receptor (ObR-b) is overexpressed in pulmonary artery smooth muscle cells (PA-SMCs) from patients with pulmonary arterial hypertension (PAH) and is implicated in both mechanisms that contribute to pulmonary vascular remodeling: hyperproliferation and inflammation. Our aim was to investigate the role of ubiquitin-specific peptidase 8 (USP8) in ObR-b overexpression in PAH.
Methods: We performed in situ and in vitro experiments in human lung specimens and isolated PA-SMCs combined with 2 different in vivo models in rodents and we generated a mouse with an inducible USP8 deletion specifically in smooth muscles.
Results: Our results showed an upregulation of USP8 in the smooth muscle layer of distal pulmonary arteries from patients with PAH, and upregulation of USP8 expression in PAH PA-SMCs, compared to controls. USP8 inhibition in PAH PA-SMCs significantly blocked both ObR-b protein expression level at the cell surface as well as ObR-b-dependant intracellular signaling pathway as shown by a significant decrease in pSTAT3 expression. USP8 was required for ObR-b activation in PA-SMCs and its inhibition prevented Ob-mediated cell proliferation through STAT3 pathway. USP8 inhibition by the chemical inhibitor DUBs-IN-2 protected against the development of experimental PH in the 2 established experimental models of PH. Targeting USP8 specifically in smooth muscle cells in a transgenic mouse model also protected against the development of experimental PH.
Conclusions: Our findings highlight the role of USP8 in ObR-b overexpression and pulmonary vascular remodeling in PAH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.healun.2023.09.003 | DOI Listing |
BMC Urol
January 2025
Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China.
Background: In male patients, benign prostate hyperplasia (BPH) and overactive bladder (OAB) secondary to BPH are the primary causes of Lower Urinary Tract Symptoms (LUTS). Recent clinical studies have reported an increased risk of LUTS, particularly severe LUTS conditions, in male asthmatic patients. However, the potential link and mechanism remain unclear.
View Article and Find Full Text PDFNat Commun
January 2025
Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany.
A balanced activity of cGMP signaling contributes to the maintenance of cardiovascular homeostasis. Vascular smooth muscle cells (VSMCs) can generate cGMP via three ligand-activated guanylyl cyclases, the NO-sensitive guanylyl cyclase, the atrial natriuretic peptide (ANP)-activated GC-A, and the C-type natriuretic peptide (CNP)-stimulated GC-B. Here, we study natriuretic peptide signaling in murine VSMCs and atherosclerotic lesions.
View Article and Find Full Text PDFEur Heart J
January 2025
Center of Excellence of Cardiovascular Sciences, Ospedale Isola Tiberina - Gemelli Isola, Rome, Italy.
Vascul Pharmacol
January 2025
Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043 Orbassano, Italy. Electronic address:
The appropriate regulation of peripheral vascular tone is crucial for maintaining tissue perfusion. Myoendothelial junctions (MEJs), specialized connections between endothelial cells and vascular smooth muscle cells, are primarily located in peripheral resistance vessels. Therefore, these junctions, with their key membrane proteins, play a pivotal role in the physiological control of relaxation-contraction coupling in resistance arterioles, mainly mediated through endothelium-derived hyperpolarization (EDH).
View Article and Find Full Text PDFPhytomedicine
December 2024
Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de S. Comba, Coimbra 3000-548, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal.
Background: Pulmonary Arterial Hypertension (PAH) is characterized by pulmonary vascular remodelling, often associated with disruption of BMPR2/Smad1/5 and BMPR2/PPAR-γ signalling pathways that ultimately lead to right ventricle failure. Disruption of intercellular junctions and communication and a pro-angiogenic environment are also characteristic features of PAH. Although, current therapies improve pulmonary vascular tone, they fail to tackle other key pathological features that could prevent disease progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!