Reclaimed water (RW) has been extensively used for irrigation in agriculture, yet the occurrence of antibiotics in real RW, and their toxicity, uptake dynamics and metabolic fate still needs comprehensive exploration. In this study, we investigated the residual concentrations of nineteen antibiotics in the RW from four wastewater treatment plants, and determined their toxicity on plant at environment-relevant concentration. Total found concentrations of these antibiotics ranged from 623.66 ng L to 1536.96 ng L, which decreased 10.3 and 19.4 % of roots' length and weight. Uptake dynamics analysis of the most hazardous antibiotic, norfloxacin (NFX) showed increasing amounts in the roots and leaves up to 3087.71 μg g. Ryegrass also can remove >80 % of 100 μg L NFX being achieved by biodegradation through ring cleavage, decarboxylation, defluorination, hydrogenation, methylation and oxidation. Toxicity assessment of the identified byproducts showed their more toxic effect on fish, daphnia and algae. This study extended our understanding of the fate of antibiotics in plants during irrigation with reclaimed water, and emphasized its safety and pollutants' biomagnification concerns.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.166975 | DOI Listing |
J Hazard Mater
January 2025
College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China. Electronic address:
Reclaimed water is widely used in agriculture irrigation to alleviate water scarcity, whereas the dissemination of antibiotic resistance genes (ARGs) in the soil it introduces has attracted widespread attention. Currently, few studies have systematically elucidated the coalescence of the resistome originating from reclaimed water with the soil's native community. Also, the effects and mechanisms of irrigation on the dissemination of ARGs in soils have yet to be demonstrated.
View Article and Find Full Text PDFWater Environ Res
January 2025
Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa, Mexico.
The reliance on agriculture in many nations has increased the use of treated wastewater for irrigation. However, reclaimed water still poses health risks from resistant pathogens like Cryptosporidium spp. Ozone, a strong disinfectant, has been used in water treatment.
View Article and Find Full Text PDFBiology (Basel)
December 2024
State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.
Mining activities in arid regions of China have led to severe environmental degradation, including soil erosion, vegetation loss, and contamination of soil and water resources. These impacts are particularly pronounced in abandoned mining areas, where the cessation of mining operations has left vast landscapes unrehabilitated. In response, the Chinese government has implemented a series of legal and regulatory frameworks, such as the "Mine Environmental Protection and Restoration Program", aimed at promoting ecological restoration in these areas.
View Article and Find Full Text PDFEnviron Pollut
January 2025
School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Hydraulic and Ocean Engineering, Ningbo University, Ningbo 315211, China. Electronic address:
Escherichia coli (E. coli) O157:H7 is a highly pathogenic zoonotic bacterium, with water serving as a key medium for its environmental transmission. However, the survival characteristics of E.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Department of Civil and Environmental Engineering, University of Florence, Via di Santa Marta 3, 50139 Firenze, Italy.
The textile district of Prato (Italy) has developed a wastewater recycling system of considerable scale. The reclaimed wastewater is characterized by high levels of hardness (32 °F on average), which precludes its direct reuse in numerous wet textile processes (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!