Droplet-based microfluidics is leading the development of miniaturized, rapid, and sensitive version of enzyme-linked immunosorbent assays (ELISAs), a central method for protein detection. These assays involve the use of a functionalized surface able to selectively capture the desired analyte. Using the droplet's oil water interface as a capture surface requires designing custom-perfluorinated fluorosurfactants bearing azide-containing polar groups, which spontaneously react when forming the droplet with strain-alkyne-functionalized antibodies solubilized in the aqueous phase. In this article, we present our research on the influence of the structure of surfactant's hydrophilic heads on the efficiency of SPAAC functionalization and on the effect of this antibody grafting process on droplet stability. We have shown that while short linkers lead to high grafting efficiency, long linkers lead to high stability, and that an intermediate size is required to balance both parameters. In the described family of surfactants, the optimal structure proved to be a PEG linker connecting a polar di-azide head and a per-fluoropolyether tail (Krytox). We also found that grafting an increasing amount of antibody, thus increasing interface coverage, increases droplet stability. It thus appears that such a bi-partite system with a reactive fluoro-surfactant in the oil phase and reactive antibody counterpart in the aqueous phase gives access in situ to novel surfactant construct providing unexplored interface structures and droplet functionality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c10655 | DOI Listing |
Chem Commun (Camb)
January 2025
Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 21045, USA.
Aqueous two-phase extraction (ATPE) is an effective and scalable liquid-phase processing method for purifying single species of single-wall carbon nanotubes (SWCNTs) from multiple species mixtures. Recent metrological developments have led to advances in the speed of identifying solution parameters leading to more efficient ATPE separations with greater fidelities. In this feature article, we review these developments and discuss their vast potential to further advance SWCNT separations science towards the optimization of production scale processes and the full realization of SWCNT-enabled technologies.
View Article and Find Full Text PDFInt J Health Sci (Qassim)
January 2025
Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al Qura University, Makkah, Saudi Arabia.
Objective: Dasatinib (DTB) is a second-generation tyrosine kinase inhibitor that was found it could help with lung cancer treatment. However, DTB has low aqueous solubility and poor bioavailability due to its incomplete absorption and high first-pass effect. The objective of this study was to improve DTB's solubility, delivery, and efficacy as a potential lung cancer treatment by developing an inhalable DTB-nanoemulsion (DNE) formulation.
View Article and Find Full Text PDFChem Sci
December 2024
Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University Corvallis OR 97331 USA
The reaction between molybdenum(ii) acetate and 5-aminoisophthalic acid (HIso-NH) afforded [MoO(μ-O)(Iso-NH)], a novel molybdenum(v) metal-organic polyhedron (MOP) with a triangular antiprismatic shape stabilized by intramolecular N-H⋯O hydrogen bonds. The synthesis conditions, particularly the choice of solvent and reaction time, led to the precipitation of the Mo(v)-MOP in five distinct crystalline forms. These forms vary in their packing arrangements, co-crystallized solvent molecules, and counter-cations, with three phases containing dimethylammonium (dma) and the other two containing diethylammonium (dea).
View Article and Find Full Text PDFGreen Chem
December 2024
KU Leuven, Department of Chemistry Celestijnenlaan 200F P.O. box 2404 B-3001 Leuven Belgium
Direct lithium extraction (DLE) from natural surface and geothermal brines is very challenging due to the low ratio of lithium to other metals, and the lack of suitable materials that bind lithium with sufficiently high selectivity. In this paper, a synergistic solvent extraction system is described that comprises a liquid ion exchanger (saponified bis(2-ethylhexyl)dithiophosphoric acid) and a lithium-selective ligand (2,9-dibutyl-1,10-phenanthroline) in an aliphatic diluent. The extraction mechanism was investigated and was confirmed to involve the binding of lithium to the selective ligand, while the liquid ion exchanger facilitates the transfer of metal ions from the aqueous to the organic phase.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147004 Punjab India
In this study, a detailed DFT investigation was conducted to systematically analyze the scavenging activity of six hydrazone compounds (1-6) against HOO˙ and CHOO˙ radicals. Three mechanistic pathways were explored: hydrogen atom transfer (HAT), single electron transfer followed by proton transfer (SETPT), and sequential proton loss electron transfer (SPLET). These mechanisms were evaluated based on thermodynamic parameters, including bond dissociation enthalpy (BDE), ionization potential (IP), proton dissociation enthalpy (PDE), proton affinity (PA), and electron transfer enthalpy (ETE) in the gas phase, water, and pentyl ethanoate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!