InO-based catalysts have shown high activity and selectivity for CO hydrogenation to methanol; however, the origin of the high performance of InO is still unclear. To elucidate the initial steps of CO hydrogenation over InO, we have combined X-ray photoelectron spectroscopy and density functional theory calculations to study the adsorption of CO on the InO(111) crystalline surface with different terminations, namely, the stoichiometric, reduced, and hydroxylated surface. The combined approach confirms that the reduction of the surface results in the formation of In adatoms and that water dissociates on the surface at room temperature. A comparison of the experimental spectra and the computed core-level shifts (using methanol and formic acid as benchmark molecules) suggests that CO adsorbs as a carbonate on all three surface terminations. We find that the adsorption of CO is hindered by hydroxyl groups on the hydroxylated surface.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10540140 | PMC |
http://dx.doi.org/10.1021/acsami.3c07166 | DOI Listing |
Sci Bull (Beijing)
December 2024
NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington DC 20005, USA.
El Niño-Southern Oscillation (ENSO) exhibits a strong asymmetry between warm El Niño and cold La Niña in amplitude and temporal evolution. An El Niño often leads to a heat discharge in the equatorial Pacific conducive to its rapid termination and transition to a La Niña, whereas a La Niña persists and recharges the equatorial Pacific for consecutive years preconditioning development of a subsequent El Niño, as occurred in 2020-2023. Whether the multiyear-long heat recharge increases the likelihood of a transition to a strong El Niño remains unknown.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
McKetta Department of Chemical Engineering and Texas Material Institute, The University of Texas at Austin, Austin, Texas 78712, United States.
Germanium (Ge) colloidal quantum dots (CQDs) were synthesized by thermal decomposition of GeI using capping ligand mixtures of oleylamine (OAm), octadecene (ODE), and trioctylphosphine (TOP). Average diameters could be tuned across a wide range, from 3 to 18 nm, by adjusting reactant concentrations, heating rates, and reaction temperatures. OAm promotes decomposition of GeI to Ge and serves as a weakly bound capping ligand.
View Article and Find Full Text PDFPlant Dis
January 2025
Tennessee State University, Otis Floyd Nursery Research Center, 472 Cadillac Lane, McMinnville, Tennessee, United States, 37110;
Incense cedar [ (Torr.) Florin] is a coniferous evergreen tree, indigenous to western North America, that is being evaluated in Tennessee for its adaptability to eastern U.S.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States.
Mixed-matrix membranes (MMMs) with favorable interfacial interactions between dispersed and continuous phases offer a promising approach to overcome the traditional trade-off between permeability and selectivity in membrane-based gas separation. In this study, we developed free-standing MMMs by embedding pristine and surface-modified TiCT MXenes into Matrimid 5218 polymer for efficient CO/CH separation. Two-dimensional TiCT with adjustable surface terminations provided control over these critical interfacial interactions.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany, 45470.
Molybdenum nitrogenase plays a crucial role in the biological nitrogen cycle by catalyzing the reduction of dinitrogen (N) to ammonia (NH) under ambient conditions. However, the underlying mechanisms of nitrogenase catalysis, including electron and proton transfer dynamics, remain only partially understood. In this study, we covalently attached molybdenum nitrogenase (MoFe) to gold electrodes and utilized surface-enhanced infrared absorption spectroscopy (SEIRA) coupled with electrochemistry techniques to investigate its catalytic mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!