The effect of dynamic vulcanization on the morphology and biodegradability of super toughened poly(lactic acid)/unsaturated poly(ether-ester) blends.

Int J Biol Macromol

Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China. Electronic address:

Published: December 2023

Preparing a super-tough polylactic acid (PLA) material while maintaining its biodegradability is a significant challenge. This study synthesized a biodegradable unsaturated poly(butylene succinate-co-fumarate)-poly(ethylene glycol) multiblock copolymer (PBSFG) and dynamically vulcanized it with PLA to obtain super-tough blends. The PBSFG self-vulcanized and formed a crosslinked "hard-soft" core-shell rubber phase in the blending process, where the PBSF segment acted as the core and PEG as the shell. As a result, the elongation at break and notched Izod impact strength of PLA increased significantly from 3 % to 66 % and from 3.2 to 58.0 kJ/m, respectively. Furthermore, adding a small amount of dicumyl peroxide (DCP) promoted dynamic vulcanization and improved the compatibility between PLA and PBSFG. With the addition of 0.03 % DCP, the elongation at break and notched Izod impact strength of PLA/PBSFG were further increased to 218 % and 88.9 kJ/m, respectively. Meanwhile, the crystallization rate of PLA was enhanced by the addition of PBSFG and DCP. The PLA/PBSFG blends also degraded in a proteinase K Tris-HCl buffered buffer solution. Finally, fully biodegradable and super-tough PLA blends were achieved.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.126790DOI Listing

Publication Analysis

Top Keywords

dynamic vulcanization
8
elongation break
8
break notched
8
notched izod
8
izod impact
8
impact strength
8
pla
6
vulcanization morphology
4
morphology biodegradability
4
biodegradability super
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!