A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Taurine Supplementation for 48-Months Improved Glucose Tolerance and Changed ATP-Related Enzymes in Avians. | LitMetric

Avians differ from mammals, especially in brain architecture and metabolism. Taurine, an amino acid basic to metabolism and bioenergetics, has been shown to have remarkable effects on metabolic syndrome and ameliorating oxidative stress reactions across species. However, less is known regarding these metabolic relationships in the avian model. The present study serves as a preliminary report that examined how taurine might affect avian metabolism in an aged model system. Two groups of pigeons (Columba livia) of mixed sex, a control group and a group that received 48 months of taurine supplementation (0.05% w/v) in their drinking water, were compared by using blood panels drawn from their basilic vein by a licensed veterinarian. From the blood panel data, taurine treatment generated higher levels of three ATP-related enzymes: glutamate dehydrogenase (GLDH), lactate dehydrogenase (LDH), and creatine kinase (CK). In this preliminary study, the role that taurine treatment might play in the adult aged pigeon's metabolism on conserved traits such as augmenting insulin production as well as non-conserved traits maintaining high levels of ATP-related enzymes was examined. It was found that taurine treatment influenced the avian glucose metabolism similar to mammals but differentially effected avian ATP-related enzymes in a unique way (i.e., ∼×2 increase in CK and LDH with a nearly ×4 increase in GLDH). Notably, long-term supplementation with taurine had no negative effect on parameters of lipid and protein metabolism nor liver enzymes. The preliminary study suggests that avians may serve as a unique model system for investigating taurine metabolism across aging with long-term health implications (e.g., hyperinsulinemia). However, the suitability of using the model would require researchers to tightly control for age, sex, dietary intake, and exercise conditions as laboratory-housed avian present with very different metabolic panels than free-flight avians, and their metabolic profile may not correlate one-to-one with mammalian data.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000533538DOI Listing

Publication Analysis

Top Keywords

atp-related enzymes
16
taurine treatment
12
taurine
9
taurine supplementation
8
examined taurine
8
model system
8
preliminary study
8
metabolism
7
enzymes
5
avian
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!