Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This experimental approach was designed to understand the gamma interaction parameters for the essential biomolecules, including starch soluble, cholesterol, myristic acid, glucose, oxalic acid, dextrose, salicylic acid, ethyl cellulose and sucrose. The empirical determination of gamma interaction parameters, such as interaction mean-free-path (MFP), buildup factor, and effective atomic number (Z) was performed by measuring mass attenuation coefficient (μ/ρ) at energies of 356 keV, 511 keV, 662 keV, 1173 keV, 1275 keV and 1332 keV. This was achieved using weak radioactive sources and a NaI(Tl) scintillation spectrometer with collimated and non-collimated transmission geometry. The experimentally determined values of gamma-ray interaction parameters were obtained non-destructively and precisely agreeing with the expected values from simulations and codes. In addition, the research findings also revealed a novel trend in gamma interaction mean free path as a function of energy and variable buildup factors for the selected biomolecules. These research findings provide valuable insight into the process of gamma radiation interaction. This approach may fulfil the increasing demand of medical, technical and academic research laboratories for a cost-effective and reliable empirical methodology to understand gamma radiation interaction with matter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.apradiso.2023.111012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!