Cruciferous-rich diets, particularly broccoli, have been associated with reduced risk of developing cancers of various sites, cardiovascular disease and type-2 diabetes. Sulforaphane (SF), a sulfur-containing broccoli-derived metabolite, has been identified as the major bioactive compound mediating these health benefits. Sulforaphane is a potent dietary activator of the transcription factor Nuclear factor erythroid-like 2 (NRF2), the master regulator of antioxidant cell capacity responsible for inducing cytoprotective genes, but its role in glucose homeostasis remains unclear. In this study, we set to test the hypothesis that SF regulates glucose metabolism and ameliorates glucose overload and its resulting oxidative stress by inducing NRF2 in human hepatoma HepG2 cells. HepG2 cells were exposed to varying glucose concentrations: basal (5.5 mM) and high glucose (25 mM), in the presence of physiological concentrations of SF (10 μM). SF upregulated the expression of glutathione (GSH) biosynthetic genes and significantly increased levels of reduced GSH. Labelled glucose and glutamine experiments to measure metabolic fluxes identified that SF increased intracellular utilisation of glycine and glutamate by redirecting the latter away from the TCA cycle and increased the import of cysteine from the media, likely to support glutathione synthesis. Furthermore, SF altered pathways generating NADPH, the necessary cofactor for oxidoreductase reactions, namely pentose phosphate pathway and 1C-metabolism, leading to the redirection of glucose away from glycolysis and towards PPP and of methionine towards methylation substrates. Finally, transcriptomic and targeted metabolomics LC-MS analysis of NRF2-KD HepG2 cells generated using CRISPR-Cas9 genome editing revealed that the above metabolic effects are mediated through NRF2. These results suggest that the antioxidant properties of cruciferous diets are intricately connected to their metabolic benefits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502441 | PMC |
http://dx.doi.org/10.1016/j.redox.2023.102878 | DOI Listing |
Front Pharmacol
December 2024
Department of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
In this study, we delve into the intrinsic mechanisms of cell communication in hepatocellular carcinoma (HCC). Initially, employing single-cell sequencing, we analyze multiple malignant cell subpopulations and cancer-associated fibroblast (CAF) subpopulations, revealing their interplay through receptor-ligand interactions, with a particular focus on SPP1. Subsequently, employing unsupervised clustering analysis, we delineate two clusters, C1 and C2, and compare their infiltration characteristics using various tools and metrics, uncovering heightened cytotoxicity and overall invasion abundance in C1.
View Article and Find Full Text PDFBr J Cancer
January 2025
Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.
Background: Pyroptosis is closely associated with chemotherapeutic drugs and immune response. Here, we investigated whether oxaliplatin, a key drug in FOLFOX-hepatic artery infusion chemotherapy (FOLFOX-HAIC), induces pyroptosis in hepatoma cells and enhances antitumor immunity after tumor cell death.
Methods: Hepatoma cells were treated with oxaliplatin.
Mol Divers
January 2025
College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, China.
A series of novel isatin-oxime ether derivatives were designed, synthesized and characterized by H NMR and C NMR and HRMS. These compounds were evaluated for their in vitro cytotoxicity against three human cancer cell lines (A549, HepG2 and Hela) by MTT assay. According to the experimental results, compounds 6a (IC = 0.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
Arsenic (As) is a toxic metalloid widespread in the environment, and its exposure has been associated with a variety of adverse health outcomes. As exposure is demonstrated to cause nonalcoholic fatty liver disease (NAFLD), and the underlying epigenetic mechanisms remain largely unknown. This study aimed to investigate the roles of histone modifications in low-level As exposure-induced NAFLD in rats.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan; Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. Electronic address:
Introduction: Paraoxonase-1 (PON1) is a crucial esterase in cardiovascular health, closely associated with HDL and known for its antioxidant and anti-inflammatory properties. Reduced PON1 activity has been linked to cardiovascular diseases. Lysophospholipids (LysoPLs), essential for cellular processes and immune responses, are implicated in the pathogenesis of cardiovascular diseases and are bound to lipoproteins, contributing to their diverse effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!