Synchronization of chaotic systems is usually investigated for structurally equivalent systems typically coupled through linear diffusive functions. Here, we focus on a particular type of coupling borrowed from a nonlinear control theory and based on the optimal placement of a sensor-a device measuring the chosen variable-and an actuator-a device applying the actuating (control) signal to a variable's derivative-in the response system, leading to the so-called flat control law. We aim to investigate the dynamics produced by a response system that is flat coupled to a drive system and to determine the degree of generalized synchronization between them using statistical and topological arguments. The general use of a flat control law for getting generalized synchronization is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0156025 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!