AI Article Synopsis

Article Abstract

Norovirus is a leading cause of epidemic viral gastroenteritis, with no currently approved vaccines or antivirals. Murine norovirus (MNoV) is a well-characterized model of norovirus pathogenesis in vivo, and persistent strains exhibit lifelong intestinal infection. Interferon-λ (IFN-λ) is a potent antiviral that rapidly cures MNoV. We previously demonstrated that IFN-λ signaling in intestinal epithelial cells (IECs) controls persistent MNoV, and here demonstrate that IFN-λ acts on tuft cells, the exclusive site of MNoV persistence, to limit infection. While interrogating the source of IFN-λ to regulate MNoV, we confirmed that MDA5-MAVS signaling, required for IFN-λ induction to MNoV in vitro, controls persistent MNoV in vivo. We demonstrate that MAVS in IECs and not immune cells controls MNoV. MAVS in nonsusceptible enterocytes, but not in tuft cells, restricts MNoV, implicating noninfected cells as the IFN-λ source. Our findings indicate that host sensing of MNoV is distinct from cellular tropism, suggesting intercellular communication between IECs for antiviral signaling induction in uninfected bystander cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499323PMC
http://dx.doi.org/10.1126/sciadv.adi2562DOI Listing

Publication Analysis

Top Keywords

tuft cells
12
mnov
10
nonsusceptible enterocytes
8
acts tuft
8
controls persistent
8
persistent mnov
8
ifn-λ
7
cells
7
ifn-λ derived
4
derived nonsusceptible
4

Similar Publications

Unipolar brush cells (UBCs) are excitatory interneurons in the cerebellar cortex that receive mossy fiber (MF) inputs and excite granule cells. The UBC population responds to brief burst activation of MFs with a continuum of temporal transformations, but it is not known how UBCs transform the diverse range of MF input patterns that occur in vivo. Here, we use cell-attached recordings from UBCs in acute cerebellar slices to examine responses to MF firing patterns that are based on in vivo recordings.

View Article and Find Full Text PDF

As sensors in the gut, tuft cells integrate a complex array of luminal signals to regulate the differentiation fate of intestinal stem cells (ISCs), which trigger a loop of tuft cell-ISC-goblet cell after parasitic infection. As a plant-derived alkaloid, Matrine plays a prominent role for standardizing ISC functions in Eimeria necatrix (EN)-exposed chicks. In this study, we investigated the modulation effects of Matrine on the specific intestinal epithelial cell loop in EN-exposed chicks in vivo and intestinal organoids (IOs) ex vivo.

View Article and Find Full Text PDF

Tracheal tuft cells shape immune responses in the airways. While some of these effects have been attributed to differential release of either acetylcholine, leukotriene C4 and/or interleukin-25 depending on the activating stimuli, tuft cell-dependent mechanisms underlying the recruitment and activation of immune cells are incompletely understood. Here we show that Pseudomonas aeruginosa infection activates mouse tuft cells, which release ATP via pannexin 1 channels.

View Article and Find Full Text PDF

Gut health is crucial in many ways, such as in improving human health in general and enhancing production in agricultural animals. To maximize the effect of a healthy gastrointestinal tract (GIT), an understanding of the regulation of intestinal functions is needed. Proper intestinal functions depend on the activity, composition, and behavior of intestinal epithelial cells (IECs).

View Article and Find Full Text PDF

Loss of Mist1 alters the characteristics of Paneth cells and impacts the function of intestinal stem cells in physiological conditions and after radiation injury.

J Pathol

February 2025

Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Cancer Hospital & Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, PR China.

Intestinal stem cells (ISCs) and Paneth cells (PCs) reside at the bottom of the crypts of Lieberkühn in the small intestine. Recent studies have shown that the transcription factor Mist1, also named BHLHA15, plays an important role in the maturation of PCs. Since there is an intimate interaction between PCs and ISCs, we speculated that the loss of Mist1 could impact these two neighboring cell types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!