Anticancer therapy screening in vitro identifies additional treatments and improves clinical outcomes. Systematically, although most tested cells respond to cues with apoptosis, an appreciable portion enters a senescent state, a critical condition potentially driving tumor resistance and relapse. Conventional screening protocols would strongly benefit from prompt identification and monitoring of therapy-induced senescent (TIS) cells in their native form. We combined complementary all-optical, label-free, and quantitative microscopy techniques, based on coherent Raman scattering, multiphoton absorption, and interferometry, to explore the early onset and progression of this phenotype, which has been understudied in unperturbed conditions. We identified TIS manifestations as early as 24 hours following treatment, consisting of substantial mitochondrial rearrangement and increase of volume and dry mass, followed by accumulation of lipid vesicles starting at 72 hours. This work holds the potential to affect anticancer treatment research, by offering a label-free, rapid, and accurate method to identify initial TIS in tumor cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10881071 | PMC |
http://dx.doi.org/10.1126/sciadv.adg6231 | DOI Listing |
Commun Biol
June 2024
G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Accurate, rapid and non-invasive cancer cell phenotyping is a pressing concern across the life sciences, as standard immuno-chemical imaging and omics require extended sample manipulation. Here we combine Raman micro-spectroscopy and phase tomography to achieve label-free morpho-molecular profiling of human colon cancer cells, following the adenoma, carcinoma, and metastasis disease progression, in living and unperturbed conditions. We describe how to decode and interpret quantitative chemical and co-registered morphological cell traits from Raman fingerprint spectra and refractive index tomograms.
View Article and Find Full Text PDFSci Rep
May 2024
Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
Apple, a vital fruit crop worldwide and a major crop grown in northern parts of India, acts as a backbone for the survival and livelihood of the farming community. However, it is prone to severe damage from insect pests and diseases. In the past few years, due to erratic weather patterns, there has been an alarmingly increased infestation of different insect pests, both invasive and non-invasive, resulting in substantial economic losses to this industry.
View Article and Find Full Text PDFSci Adv
September 2023
Department of Physics, Politecnico di Milano, Milan, Italy.
Anticancer therapy screening in vitro identifies additional treatments and improves clinical outcomes. Systematically, although most tested cells respond to cues with apoptosis, an appreciable portion enters a senescent state, a critical condition potentially driving tumor resistance and relapse. Conventional screening protocols would strongly benefit from prompt identification and monitoring of therapy-induced senescent (TIS) cells in their native form.
View Article and Find Full Text PDFCancers (Basel)
June 2021
Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
Pituitary adenomas count among the most common intracranial tumors. During pituitary oncogenesis structural, textural, metabolic and molecular changes occur which can be revealed with our integrated ultrahigh-resolution multimodal imaging approach including optical coherence tomography (OCT), multiphoton microscopy (MPM) and line scan Raman microspectroscopy (LSRM) on an unprecedented cellular level in a label-free manner. We investigated 5 pituitary gland and 25 adenoma biopsies, including lactotroph, null cell, gonadotroph, somatotroph and mammosomatotroph as well as corticotroph.
View Article and Find Full Text PDFPhotochem Photobiol Sci
May 2019
Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Waehringer Guertel 18-20, 1090 Vienna, Austria.
Multimodal imaging platforms offer a vast array of tissue information in a single image acquisition by combining complementary imaging techniques. By merging different systems, better tissue characterization can be achieved than is possible by the constituent imaging modalities alone. The combination of optical coherence tomography (OCT) with non-linear optical imaging (NLOI) techniques such as two-photon excited fluorescence (TPEF), second harmonic generation (SHG) and coherent anti-Stokes Raman scattering (CARS) provides access to detailed information of tissue structure and molecular composition in a fast, label-free and non-invasive manner.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!