Computational methods in modern drug discovery have become ubiquitous, with methods that cover most of the discovery stages: from hit finding and lead identification to lead optimization. The overall aim of these computational methods is to obtain a more efficient discovery process, by reducing the number of "wet" experiments required to produce therapeutics that have higher probability of succeeding in clinical development and subsequently benefitting end patients by developing highly effective therapeutics having minimal side effects. Virtual Screening is usually applied at the early stage of drug discovery, looking to find chemical matter having desired properties, such as molecular shape, electrostatics, and pharmacophores at desired three-dimensional positions. The aim of this stage is to search in a wide chemical space, including chemistry available from commercial suppliers and virtual databases of predicted reaction products, to identify molecules that would exert a particular biochemical response. This initial stage of the discovery process is very important since the subsequent stages will use the initial chemical motifs that have been found at the hit finding stage, and therefore the most suitable the compound is found, the more likely it is that subsequent stages will be successful and less time and resource consuming. This chapter provides a summary of various Virtual Screening methods, including shape match and molecular docking, and these methods are used in a Virtual Screening workflow that is provided as an example which is described to be run automatically in cloud resources. This automatic in-depth exploration of the chemical space using validated Virtual Screening methods can lead to a more streamlined and efficient discovery process, aiming to deliver chemical matter of high quality and maximizing the required biological effects while minimizing adverse effects. Surely, Virtual Screening pipelines of this nature will continue to play a central role in producing much needed therapeutics for the health challenges of the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3449-3_6 | DOI Listing |
Pharmaceutics
December 2024
Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia.
Glucagon-like peptide-1 (GLP-1) receptor is currently one of the most explored targets exploited for the management of diabetes and obesity, with many aspects of its mechanisms behind cardiovascular protection yet to be fully elucidated. Research dedicated towards the development of oral GLP-1 therapy and non-peptide ligands with broader clinical applications is crucial towards unveiling the full therapeutic capacity of this potent class of medicines. This study describes the virtual screening of a natural product database consisting of 695,133 compounds for positive GLP-1 allosteric modulation.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
School of Medicine, Shanghai University, Shanghai 200444, China.
Background/objectives: Breast cancer is the second most common malignancy worldwide and poses a significant threat to women's health. However, the prognostic biomarkers and therapeutic targets of breast cancer are unclear. A prognostic model can help in identifying biomarkers and targets for breast cancer.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia.
Monkeypox is a re-emerging viral disease with features of infectiously transmitted zoonoses. It is now considered a public health priority because of its rising incidence and transmission from person to person. Monkeypox virus (MPXV) VP39 protein is identified as an essential protein for replication of the virus, and therefore, it is a potential target for antiviral drugs.
View Article and Find Full Text PDFMolecules
December 2024
Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche "STEBICEF", University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy.
Breast cancer remains one of the most prevalent and lethal malignancies in women, particularly the estrogen receptor-positive (ER+) subtype, which accounts for approximately 70% of cases. Traditional endocrine therapies, including aromatase inhibitors, selective estrogen receptor degraders/antagonists (SERDs), and selective estrogen receptor modulators (SERMs), have improved outcomes for metastatic ER+ breast cancer. However, resistance to these agents presents a significant challenge.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa.
The progressive development of resistance in to almost all available antibiotics has made it crucial to develop novel approaches to tackling multi-drug resistance (MDR). One of the primary causes of antibiotic resistance is the over-expression of the MtrCDE efflux pump protein, making this protein a vital target for fighting against antimicrobial resistance (AMR) in . This study was aimed at evaluating the potential MtrCDE efflux pump inhibitors (EPIs) and their stability in treating gonorrhoea infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!