The domain of computational biomedicine is a new and burgeoning one. Its areas of concern cover all scales of human biology, physiology, and pathology, commonly referred to as medicine, from the genomic to the whole human and beyond, including epidemiology and population health. Computational biomedicine aims to provide high-fidelity descriptions and predictions of the behavior of biomedical systems of both fundamental scientific and clinical importance. Digital twins and virtual humans aim to reproduce the extremely accurate duplicate of real-world human beings in cyberspace, which can be used to make highly accurate predictions that take complicated conditions into account. When that can be done reliably enough for the predictions to be actionable, such an approach will make an impact in the pharmaceutical industry by reducing or even replacing the extremely laboratory-intensive preclinical process of making and testing compounds in laboratories, and in clinical applications by assisting clinicians to make diagnostic and treatment decisions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3449-3_1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!