In the field of drug development and repositioning, the prediction of drug-disease associations is a critical task. A recently proposed method for predicting drug-disease associations based on graph convolution relies heavily on the features of adjacent nodes within the homogeneous network for characterizing information. However, this method lacks node attribute information from heterogeneous networks, which could hardly provide valuable insights for predicting drug-disease associations. In this study, a novel drug-disease association prediction model called DAHNGC is proposed, which is based on a graph convolutional neural network. This model includes two feature extraction methods that are specifically designed to extract the attribute characteristics of drugs and diseases from both homogeneous and heterogeneous networks. First, the DropEdge technique is added to the graph convolutional neural network to alleviate the oversmoothing problem and obtain the characteristics of the same nodes of drugs or diseases in the homogeneous network. Then, an automatic feature extraction method in the heterogeneous network is designed to obtain the features of drugs or diseases at different nodes. Finally, the obtained features are put into the fully connected network for nonlinear transformation, and the potential drug-disease pairs are obtained by bilinear decoding. Experimental results demonstrate that the DAHNGC model exhibits good predictive performance for drug-disease associations.

Download full-text PDF

Source
http://dx.doi.org/10.1089/cmb.2023.0135DOI Listing

Publication Analysis

Top Keywords

drug-disease associations
16
drugs diseases
12
graph convolution
8
drug-disease association
8
association prediction
8
heterogeneous network
8
predicting drug-disease
8
based graph
8
homogeneous network
8
heterogeneous networks
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!