Capturing environmental stimuli is an essential aspect of electronic skin applications in robotics and prosthetics. Sensors made of temperature- and humidity-responsive hydrogel and piezoelectric zinc oxide (ZnO) core-shell nanorods have shown the necessary sensitivity. This is achieved by using highly conformal and substrate independent deposition methods for the ZnO and the hydrogel, i.e., plasma enhanced atomic layer deposition (PEALD) and initiated chemical vapor deposition (iCVD). In this work, we demonstrate that the use of a multichamber reactor enables performing PEALD and iCVD, sequentially, without breaking the vacuum. The sequential deposition of uniform as well as conformal thin films responsive to force, temperature, and humidity improved the deposition time and quality significantly. Proper interlayer adhesion could be achieved via in situ interface activation, a procedure easily realizable in this unique multichamber reactor. Beyond the fabrication method, also the mechanical properties of the template used to embed the core-shell nanorods and the cross-linker density in the hydrogel were optimized following the results of finite element models. Finally, galvanostatic electrochemical impedance spectroscopy measurements showed how temperature and humidity stimuli have different effects on the device impedance and phase, and these differences can be the basis for stimuli recognition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565566 | PMC |
http://dx.doi.org/10.1021/acsami.3c08376 | DOI Listing |
Nano Lett
January 2025
School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China.
Eliminating cancer stem cells (CSCs) is essential for the effective treatment of triple-negative breast cancer (TNBC). This study synthesized Au@cerium-zinc composite core@shell nanoparticles (Au@Zn/CeO) that were subsequently conjugated with () to create the engineered bacterium AZCE, which was then combined with microneedle carriers and freeze-dried to obtain AZCE-MN. Upon implantation into TNBC tumors, the inherent properties of facilitate AZCE to penetrate the extracellular matrix and break through the basement membrane, enabling effective delivery of AZC to CSCs-enriched regions deep within the tumor.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Mechatronics Engineering Department, School of Automobile, Mechanical and Mechatronics, Manipal University Jaipur, India. Electronic address:
Herein, novel hollow ZnO and ZnO@SnInS core-shell nanorods (NRs) with controlled shell thickness were developed via a facile synthesis approach for the efficient photocatalytic remediation of organic as well inorganic water pollutants. The introduction of SnInS shell layer coating over ZnO enhances visible light absorption, efficient exciton-mediated direct charge transfer, and reduces the band gap of ZnO@SnInS core-shell nanorods. The ZnO@SnInS core-shell nanorods show efficient solar-light driven catalytic efficiency for the disintegration of industrial dye (orange G), degradation of tetracycline, and reduction of hazardous Cr (VI) ions in aquatic systems.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Seoul 04620, Republic of Korea. Electronic address:
This paper introduces a highly absorbent and sensitive cellulose nanofiber (CNF)/gold nanorod (GNR)@Ag surface-enhanced Raman scattering (SERS) sensor, fabricated using the vacuum filtration method. By optimizing the Ag thickness in the GNR@Ag core-shell structures and integrating them with CNFs, optimal SERS hotspots were identified using the Raman probe molecule 4-aminothiophenol (4-ATP). To concentrate pesticides extracted from fruit and vegetable surfaces, we utilized the evaporation enrichment effect using hydrophilic CNF and hole-punched hydrophobic polydimethylsiloxane (PDMS).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.
Emulsion interface engineering has been widely employed for the synthesis of nanomaterials with various morphologies. However, the instability of the liquid-liquid interface and uncertain interfacial interactions impose significant limitations on controllable fabrications. Here, we developed a liquid-nano-liquid interface-oriented anisotropic encapsulation strategy for fabricating asymmetric nanohybrids.
View Article and Find Full Text PDFNano Lett
January 2025
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry Northeast Normal University, Changchun, Jilin 130024, China.
Through hydrogenation and N-N coupling, azobenzene can be produced via highly selective electrocatalytic nitrobenzene reduction, offering a mild, cost-effective, and sustainable industrial route. Inspired by the density functional theory calculations, the introduction of H* active NiP into CoP, which reduces the water dissociation energy barrier, optimizes H* adsorption, and moderates key intermediates' adsorption, is expected to assist its hydrogenation ability for one-step electrosynthesizing azobenzene. A self-supported NiCo@NiP/CoP nanorod array electrode was synthesized, featuring NiCo alloy nanoparticles within a NiP/CoP shell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!