Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This review aims to discuss organic semiconductors constructed on dihydroindenofluorene positional isomers, which are key molecular scaffolds in organic electronics. Bridged oligophenylenes are key organic semiconductors that have allowed the development of organic electronic technologies. Dihydroindenofluorenes (DHIFs) belong to the family of bridged oligophenylenes constructed on a terphenyl backbone. They have proven to be very promising building blocks for the construction of highly efficient organic semiconductors for all OE devices, namely organic light emitting diodes (OLEDs), phosphorescent OLEDs, organic field-effect transistors (OFETs), solar cells,
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1cs00993a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!