Recent advancements in 2D materials have revealed the potential of van der Waals magnets, and specifically of their magnetic anisotropy that allows applications down to the 2D limit. Among these materials, CrSBr has emerged as a promising candidate, because its intriguing magnetic and electronic properties have appeal for both fundamental and applied research in spintronics or magnonics. In this work, nano-SQUID-on-tip (SOT) microscopy is used to obtain direct magnetic imaging of CrSBr flakes with thicknesses ranging from monolayer (N = 1) to few-layer (N = 5). The ferromagnetic order is preserved down to the monolayer, while the antiferromagnetic coupling of the layers starts from the bilayer case. For odd layers, at zero applied magnetic field, the stray field resulting from the uncompensated layer is directly imaged. The progressive spin reorientation along the out-of-plane direction (hard axis) is also measured with a finite applied magnetic field, allowing evaluation of the anisotropy constant, which remains stable down to the monolayer and is close to the bulk value. Finally, by selecting the applied magnetic field protocol, the formation of Néel magnetic domain walls is observed down to the single-layer limit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202307195 | DOI Listing |
Bio Protoc
January 2025
Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark.
Magnetic resonance imaging (MRI) is an invaluable method of choice for anatomical and functional in vivo imaging of the brain. Still, accurate delineation of the brain structures remains a crucial task of MR image evaluation. This study presents a novel analytical algorithm developed in MATLAB for the automatic segmentation of cerebrospinal fluid (CSF) spaces in preclinical non-contrast MR images of the mouse brain.
View Article and Find Full Text PDFNat Ment Health
January 2025
Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland.
Atypical face processing is commonly reported in autism. Its neural correlates have been explored extensively across single neuroimaging modalities within key regions of the face processing network, such as the fusiform gyrus (FFG). Nonetheless, it is poorly understood how variation in brain anatomy and function jointly impacts face processing and social functioning.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
January 2025
Shandong Provincial Hospital Affiliated to Shandong First Medical University, Department of Neurosurgery, Jinan, China.
Purpose: Differentiating primary central nervous system lymphoma (PCNSL) and glioblastoma (GBM) is crucial because their prognosis and treatment differ substantially. Manual examination of their histological characteristics is considered the golden standard in clinical diagnosis. However, this process is tedious and time-consuming and might lead to misdiagnosis caused by morphological similarity between their histology and tumor heterogeneity.
View Article and Find Full Text PDFACS Mater Au
January 2025
Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States.
Lanthanide materials with a 4f electron configuration (S) offer an exciting system for realizing multiple addressable spin states for qubit design. While the S ground state of 4f free ions displays an isotropic character, breaking degeneracy of this ground state and excited states can be achieved through local symmetry of the lanthanide and the choice of ligands. This makes Eu attractive as it mirrors Gd in exhibiting the S ground state, capable of seven spin-allowed transitions.
View Article and Find Full Text PDFACS Mater Au
January 2025
Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates.
Topological quantum materials hold great promise for future technological applications. Their unique electronic properties, such as protected surface states and exotic quasi-particles, offer opportunities for designing novel electronic and spintronics devices and allow quantum information processing. The origin of the interplay between various electronic orders in topological quantum materials, such as superconductivity and magnetism, remains unclear, particularly whether these electronic orders cooperate, compete, or simply coexist.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!