Immune Dysfunction from Radiation Exposure.

Radiat Res

Basic Immunology Branch (BIB), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland.

Published: October 2023

Exposure to ionizing radiation causes acute damage and loss of bone marrow and peripheral immune cells that can result in high mortality due to reduced resistance to infections and hemorrhage. Besides these acute effects, tissue damage from radiation can trigger inflammatory responses, leading to progressive and chronic tissue damage by radiation-induced loss of immune cell types that are required for resolving tissue injuries. Understanding the mechanisms involved in radiation-induced immune system injury and repair will provide new insights for developing medical countermeasures that help restore immune homeostasis. For these reasons, The Radiation and Nuclear Countermeasures Program (RNCP) and the Basic Immunology Branch (BIB) under the Division of Allergy, Immunology, and Transplantation (DAIT) within the National Institute of Allergy and Infectious Diseases (NIAID) convened a two-day workshop, along with partners from the Biomedical Advanced Research and Development Authority (BARDA), and the Radiation Injury Treatment Network (RITN). This workshop, titled "Immune Dysfunction from Radiation Exposure," was held virtually on September 9-10, 2020; this Commentary provides a high-level overview of what was discussed at the meeting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10599297PMC
http://dx.doi.org/10.1667/RADE-22-00197.1DOI Listing

Publication Analysis

Top Keywords

dysfunction radiation
8
tissue damage
8
radiation
6
immune
5
immune dysfunction
4
radiation exposure
4
exposure exposure
4
exposure ionizing
4
ionizing radiation
4
radiation acute
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!