FeNi oxides/hydroxides are the best performing catalysts for oxidizing water at basic pH. Consequently, their improvement is the cornerstone to develop more efficient artificial photosynthetic systems. During the last 5 years different reports have demonstrated an enhancement of their activity by engineering their structures via: (1) modulation of the number of oxygen, iron and nickel vacancies; (2) single atoms (SAs) doping with metals such as Au, Ir, Ru and Pt; and (3) modification of their surface using organic ligands. All these strategies have led to more active and stable electrocatalysts for oxygen evolution rection (OER). In this Concept, we critically analyze these strategies using the most relevant examples.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202302251DOI Listing

Publication Analysis

Top Keywords

oxygen evolution
8
feni oxides/hydroxides
8
boosting oxygen
4
evolution activity
4
activity feni
4
oxides/hydroxides molecular
4
molecular atomic
4
atomic engineering
4
engineering feni
4
oxides/hydroxides best
4

Similar Publications

Hydrogen peroxide (HO) electrosynthesis via the 2e oxygen reduction reaction (ORR) is considered as a cost-effective and safe alternative to the energy-intensive anthraquinone process. However, in more practical environments, namely, the use of neutral media and air-fed cathode environments, slow ORR kinetics and insufficient oxygen supply pose significant challenges to efficient HO production at high current densities. In this work, mesoporous B-doped carbons with novel curved BC active sites, synthesized via a carbon dioxide (CO) reduction using a pore-former agent, to simultaneously achieve excellent 2e ORR activity and improved mass transfer properties are introduced.

View Article and Find Full Text PDF

Nickel hydroxide (Ni(OH)) is considered to be one of the most promising electrocatalysts for urea oxidation reaction (UOR) under alkaline conditions due to its flexible structure, wide composition and abundant 3D electrons. However, its slow electrochemical reaction rate, high affinity for the reaction intermediate *COOH, easy exposure to low exponential crystal faces and limited metal active sites that seriously hinder the further improvement of UOR activities. Herein it is reported electrocatalyst composed of rich oxygen-vacancy (O) defects with amorphous SeO-covered Ni(OH) (O-SeO/Ni(OH)).

View Article and Find Full Text PDF

Inducing magnetic ordering in a non-ferrous layered double hydroxides (LDHs) instigates higher spin polarization, which leads to enhanced efficiency during oxygen evolution reaction (OER). In nano-sized magnetic materials, the concept of elongated grains drives domain alignment under the application of an external magnetic field. Hence, near the solid electrode interface, modified magnetohydrodynamics (MHD) positively impacts the electrocatalytic ability of non-ferrous nanocatalysts.

View Article and Find Full Text PDF

Constructing bifunctional electrocatalysts through the synergistic effect of diverse metal sites is crucial for achieving high-efficiency and steady overall water splitting. Herein, a "dual-HER/OER-sites-in-one" strategy is proposed to regulate dominant active sites, wherein Ni/Co(OH)-Ru heterogeneous catalysts formed on nickel foam (NF) demonstrate remarkable catalytic activity for oxygen evolution reaction (OER) as well as hydrogen evolution reaction (HER). Meanwhile, the potentials@10 mA cm of Ni/Co(OH)-Ru@NF for overall alkaline water and seawater splitting are only 1.

View Article and Find Full Text PDF

Chiral Metal Coating to Enhance Water Electrolysis.

Energy Fuels

January 2025

Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.

Producing hydrogen through water splitting often faces challenges of overpotential, stability, and expensive catalysts, which limit its efficiency and hinder the advancement of hydrogen production technologies. Nickel foam and nickel meshes have emerged as promising materials for electrolyzer electrodes due to their high surface area and the ability to produce electrolyzers with a very small gap between the anode and cathode. This study presents a simple method for coating Ni-based electrodes with a chiral Ni-Au film, using electroplating, thus enhancing its efficiency dramatically.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!