iMS-Bmal1 mice show evident signs of sarcopenia that are counteracted by exercise and melatonin therapies.

J Pineal Res

Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain.

Published: January 2024

Sarcopenia is an age-related disease characterized by a reduction in muscle mass, strength, and function and, therefore, a deterioration in skeletal muscle health and frailty. Although the cause of sarcopenia is still unknown and, thus, there is no treatment, increasing evidence suggests that chronodisruption, particularly alterations in Bmal1 clock gene, can lead to those deficits culminating in sarcopenia. To gain insight into the cause and mechanism of sarcopenia and the protective effect of a therapeutic intervention with exercise and/or melatonin, the gastrocnemius muscles of male and female skeletal muscle-specific and inducible Bmal1 knockout mice (iMS-Bmal1 ) were examined by phenotypic tests and light and electron microscopy. Our results revealed a disruption of the normal activity/rest rhythm, a drop in skeletal muscle function and mass, and increased frailty in male and female iMS-Bmal1 animals compared to controls. A reduction in muscle fiber size and increased collagenous tissue were also detected, accompanied by reduced mitochondrial oxidative capacity and a compensatory shift towards a more oxidative fiber type. Electron microscopy further supports mitochondrial impairment in mutant mice. Melatonin and exercise ameliorated the damage caused by loss of Bmal1 in mutant mice, except for mitochondrial damage, which was worsened by the latter. Thus, iMS-Bmal1 mice let us to identify Bmal1 deficiency as the responsible for the appearance of sarcopenia in the gastrocnemius muscle. Moreover, the results support the exercise and melatonin as therapeutic tools to counteract sarcopenia, by a mechanism that does not require the presence of Bmal1.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jpi.12912DOI Listing

Publication Analysis

Top Keywords

ims-bmal1 mice
8
exercise melatonin
8
reduction muscle
8
skeletal muscle
8
male female
8
electron microscopy
8
mutant mice
8
sarcopenia
7
muscle
5
bmal1
5

Similar Publications

iMS-Bmal1 mice show evident signs of sarcopenia that are counteracted by exercise and melatonin therapies.

J Pineal Res

January 2024

Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain.

Sarcopenia is an age-related disease characterized by a reduction in muscle mass, strength, and function and, therefore, a deterioration in skeletal muscle health and frailty. Although the cause of sarcopenia is still unknown and, thus, there is no treatment, increasing evidence suggests that chronodisruption, particularly alterations in Bmal1 clock gene, can lead to those deficits culminating in sarcopenia. To gain insight into the cause and mechanism of sarcopenia and the protective effect of a therapeutic intervention with exercise and/or melatonin, the gastrocnemius muscles of male and female skeletal muscle-specific and inducible Bmal1 knockout mice (iMS-Bmal1 ) were examined by phenotypic tests and light and electron microscopy.

View Article and Find Full Text PDF

Apparent Absence of BMAL1-Dependent Skeletal Muscle-Kidney Cross Talk in Mice.

Biomolecules

February 2022

Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32610, USA.

BMAL1 is a core mammalian circadian clock transcription factor responsible for the regulation of the expression of thousands of genes. Previously, male skeletal-muscle-specific BMAL1-inducible-knockout (iMS-BMAL1 KO) mice have been described as a model that exhibits an aging-like phenotype with an altered gait, reduced mobility, muscle weakness, and impaired glucose uptake. Given this aging phenotype and that chronic kidney disease is a disease of aging, the goal of this study was to determine if iMS-BMAL1 KO mice exhibit a renal phenotype.

View Article and Find Full Text PDF

The endogenous molecular clock orchestrates the temporal separation of substrate metabolism in skeletal muscle.

Skelet Muscle

May 2015

Department of Physiology, College of Medicine, University of Kentucky, MS 508, 800 Rose Street, Lexington, KY 40536 USA ; Center for Muscle Biology, University of Kentucky, 800 Rose Street, Lexington, KY 40536 USA.

Background: Skeletal muscle is a major contributor to whole-body metabolism as it serves as a depot for both glucose and amino acids, and is a highly metabolically active tissue. Within skeletal muscle exists an intrinsic molecular clock mechanism that regulates the timing of physiological processes. A key function of the clock is to regulate the timing of metabolic processes to anticipate time of day changes in environmental conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!