The effects of the structural units and blending ratio on the crystallization behavior of blends of polyamide 4 (PA4) with polyamide 56 (PA56) and polyamide 11 (PA11) were studied using molecular dynamics simulations and non-isothermal crystallization kinetics. The simulation results show that the crystallinity of PA4/PA56 blends (B4/56) with a PA56 content of 30-50% was 3.5-10.8% lower than that of B4/56 with a PA56 content of 20%, and the crystallinity of PA4/PA11 blends (B4/11) decreased by 9.5% as PA11 content increased from 20% to 50%. The experimental results show that both B4/56 and B4/11 form PA4- and PA56-rich (PA11-rich) phases through crystallization-induced phase separation. The interplanar spacing of the PA4-rich phase of B4/56 changed relative to that of PA4, indicating that some PA56 entered the PA4-rich phase unit cell. As the PA56 content increased from 20% to 50%, the crystallinity of B4/56 decreased by 11.2%, and the crystallization-induced phase separation grew distinct. The B4/56 with a higher PA4 content crystallized more easily. As the PA11 content increased from 20% to 50%, the crystallinity of B4/11 decreased by 12.5%, and PA11 barely participated in the crystallization of the PA4-rich phase. The blending ratio had no significant effect on the crystallization rate and crystal-growth degree of B4/11, and the non-isothermal crystallization activation energy of B4/11 was significantly higher than that of B4/56, indicating that the crystallization ability of the B4/11 blend system is worse. This study provides a theoretical basis for the design and performance regulation of PA4-based polyamide blends.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cp02528d | DOI Listing |
Molecules
January 2025
Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, nam. Cs Legii 565, 532 10 Pardubice, Czech Republic.
The particle size-dependent processes of structural relaxation and crystal growth in amorphous nifedipine were studied by means of non-isothermal differential scanning calorimetry (DSC) and Raman microscopy. The enthalpy relaxation was described in terms of the Tool-Narayanaswamy-Moynihan model, with the relaxation motions exhibiting the activation energy of 279 kJ·mol for the temperature shift, but with a significantly higher value of ~500 kJ·mol being obtained for the rapid transition from the glassy to the undercooled liquid state (the latter is in agreement with the activation energy of the viscous flow). This may suggest different types of relaxation kinetics manifesting during slow and rapid heating, with only a certain portion of the relaxation motions occurring that are dependent on the parameters of a given temperature range and time frame.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
A series of polyurethanes (PU-GT) were prepared using polyglycolide-block-polytetrahydrofuran-block-polyglycolide (PGA-PTHF-PGA), polytetrahydrofuran homopolymer (PTHF), glycerol, and hexamethylene diisocyanate (HDI) by a one-pot synthesis method. The non-isothermal crystallization and subsequent heating curves showed that the PTHF component in these polyurethanes could crystallize in a temperature range of -11.5~2.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawla II 24, 61-138 Poznan, Poland.
Biogenic silica (SiO) sourced from living organisms, especially plants such as rice and other cereals, has recently been successfully applied in different polymeric compositions. Another rich source of biogenic silica is common horsetail ( L.), containing up to 25% SiO in the dry matter.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
College of Science, Nanchang Institute of Technology, Nanchang 330099, China.
Polylactic acid (PLA) is a widely recognized biodegradable polymer. However, the slow crystallization rate of PLA restricts its practical applications. In this study, camphor leaf biochar decorated with multi-walled carbon nanotubes (C@MWCNTs) was prepared using the strong adhesive properties of polydopamine, and PLA/C@MWCNTs composites were fabricated via the casting solution method.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Metallurgy and Materials Engineering Department, Engineering Faculty, Esentepe Campus, Sakarya University, 54187 Sakarya, Türkiye.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!