Background: Acute kidney injury (AKI) is a common and serious medical condition with high morbidity and mortality. Recent research has highlighted ferroptosis, a novel form of programmed cell death, as a potential therapeutic target in mitigating renal tubular injury in AKI. Ferrostatin-1, a specific ferroptosis inhibitor, has been demonstrated to prevent renal injury through ferroptosis inhibition.

Methods: Utilizing a murine AKI model, we investigated the effects of Ferrostatin-1 by administering it post-injury. Through high-throughput sequencing and pathological analysis, we focused on the critical role of ferroptosis-related pathways in the treatment.

Results: Ferrostatin-1 post-conditioning effectively mitigated oxidative damage and reduced iron content associated with AKI. Additionally, critical ferroptosis-related proteins, such as GPX4, SLC7A11, NRF2, and FTH1, exhibited increased expression levels. , Ferrostatin-1 treatment of HK-2 cells significantly diminished lipid peroxidation and iron accumulation. Furthermore, Ferrostatin-1 was found to downregulate the PI3K signalling pathway.

Conclusion: Ferrostatin-1 acted as a potential ferroptosis inhibitor with the capacity to enhance antioxidant defences. This study suggests that Ferrostatin-1 could serve as a promising novel strategy for improving the treatment of AKI and promoting recovery from the condition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10494833PMC
http://dx.doi.org/10.7717/peerj.15786DOI Listing

Publication Analysis

Top Keywords

ferrostatin-1
8
acute kidney
8
kidney injury
8
injury aki
8
ferroptosis inhibitor
8
aki
5
ferrostatin-1 post-treatment
4
post-treatment attenuates
4
attenuates acute
4
injury
4

Similar Publications

Bisphenol S accelerates the progression of high fat diet-induced NAFLD by triggering ferroptosis via regulating HMGCS2.

J Hazard Mater

January 2025

Department of General Surgery, Changzhou TCM Hospital, No. 25, Heping North Road, Changzhou City, Jiangsu Province 213003, China. Electronic address:

Bisphenol S (BPS) is a widely detected environmental toxin with the potential to increase the risk of non-alcoholic fatty liver disease (NAFLD). However, the effects of BPS on the progression of high fat diet (HFD)-induced NAFLD remain unclear. This study aimed to explore the role and underlying mechanisms of action of BPS in HFD-induced NAFLD.

View Article and Find Full Text PDF

SNX30 inhibits lung adenocarcinoma cell proliferation and induces cell ferroptosis through regulating SETDB1.

J Cardiothorac Surg

January 2025

Department of Respiratory and Critical Care Medicine, Datian County General Hospital, 180 Xueshan North Road, Datian County, 366100, China.

Background: Lung adenocarcinoma is the most common form of lung cancer and one of the most life-threatening malignant tumors. Ferroptosis is an iron-dependent regulatory cell death pathway that is crucial for tumor growth. SNX30 is a key regulatory factor in cardiac development; however, its regulatory mechanism and role in inducing ferroptosis in lung adenocarcinoma remain unclear.

View Article and Find Full Text PDF

Silibinin alleviates acute liver failure by modulating AKT/GSK3β/Nrf2/GPX4 pathway.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, P. R. China.

Silibinin (Sil) is a major bioactive component of silymarin, extracted from the fruit and seeds of Silybum marianum. Silibinin meglumine (SM) is a water-soluble derivative of silibinin that has shown significant potential in liver fibrosis. However, the potential effects and underlying mechanisms of SM on acute liver failure (ALF) are still not fully understood.

View Article and Find Full Text PDF

Unlabelled: Human cytomegalovirus (HCMV) modulates numerous cellular pathways to facilitate infection, including key components in cellular iron homeostasis. Iron is essential to many cellular processes but, if present in excess, drives cell death through ferroptosis. Ferroptosis is a process that is dependent upon the accumulation of oxidatively damaged phospholipids (lipid peroxides); when these lipid peroxides accumulate in membranes, this culminates in plasma membrane rupture and eventual cell lysis.

View Article and Find Full Text PDF

Downregulation of SLC7A11 by Bis(4-Hydroxy-3,5-Dimethylphenyl) Sulfone Induces Ferroptosis in Hepatocellular Carcinoma Cell.

Mol Carcinog

January 2025

Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China.

The progression of tumors has been demonstrated to have a strong correlation with ferroptosis. Bis(4-hydroxy-3,5-dimethylphenyl) sulfone (TMBPS) has been shown to effectively inhibit the proliferation of hepatocellular carcinoma (HCC), but its underlying mechanism is not clear. In this study, ferrostatin-1 (Fer-1) was employed to explore whether the death of HCC cells caused by TMBPS is related to ferroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!