One of the challenges of the food industry is detecting the potential of novel non-dairy food matrices to deliver probiotic bacteria to humans as cholesterol-free products, suitable for people with lactose intolerance and sensitivity to dairy proteins. In this study, the possibility of adding sprouted quinoa milk (SQM) at 0%, 50%, and 100% levels in probiotic non-dairy dessert containing native isolated from camel milk was investigated. Physicochemical, functional, microbiological, color, texture, and organoleptic characteristics of probiotic dessert samples were evaluated during 1, 7, and 14 days of storage at 4°C. According to the results, fat, protein, carbohydrates, and ash increased significantly during germination ( < .05). With boosting the SQM levels in the probiotic desserts, the number of soluble solids increased, and the syneresis decreased significantly ( < .05). The simultaneous increase in SQM levels and time caused an increase in acidity and decreased the moisture content of the samples. As the storage time increased, the intensity of the syneresis also decreased. The brightness index in all samples containing SQM was lower than in the control sample. During storage, the viable cell number of in all samples decreased significantly. However, they were above the minimum required for FDA recommendation (6 log CFU g), varying from 4.6 × 108 CFU/mL to 4.3 × 107 CFU/mL for 50% SQM treatment. It was concluded that probiotic desserts containing SQM up to 50% could be properly presented in the market as gluten-free and functional food products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10494662 | PMC |
http://dx.doi.org/10.1002/fsn3.3517 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!