Background: N6-methyladenosine (m6A) has a critical role in the development and progression of cancer. However, the genetic and epigenetic patterns, as well as tumor microenvironment (TME) infiltration characteristics of m6A regulators in colorectal cancer (CRC) remain largely unknown.
Methods: Molecular patterns of m6A modifications of 24 m6A regulators in CRC samples were evaluated using data from The Cancer Genome Atlas (TCGA). Mutations, copy number variations (CNVs), DNA methylation, and chromatin accessibility were examined to investigate the underlying mechanisms of the aberrant expression of m6A regulators. Correlations between m6A-related genes and TME cell-infiltrating characteristics were evaluated using Tumor Immune Estimation Resource (TIMER).
Results: The m6A regulators were frequently dysregulated in CRC, with two downregulated and 16 upregulated. All the m6A regulators had mutations (frequency ranging from 0.9% to 7%), with active mutations tending to occur in and inactive mutations in . Only five m6A regulators had CNV frequency greater than 1%: (2.4%), (7.0%), (1.9%), (1.7%), and (3.0%). The copy numbers of these five genes were positively correlated with their expression levels. The m6A regulators frequently showed imbalanced methylation in CRC, with hypomethylation of , , , and hypermethylation of , , and . Most m6A regulators had high chromatin accessibility, which was positively correlated with their gene expression. IGF2BP1 was identified as an independent prognostic factor for overall survival. Moreover, the expression of most m6A regulators was positively correlated with the infiltration of B cells, CD8 T cells, CD4 T cells, macrophages, neutrophils, and dendritic cells.
Conclusions: Aberrant expression of m6A regulators is associated with mutation, CNV, and chromatin accessibility, owing to both genetic and epigenetic modifications. The TME infiltration characterization of m6A regulators could guide the development of more effective immunotherapy strategies in CRC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10493784 | PMC |
http://dx.doi.org/10.21037/tcr-23-186 | DOI Listing |
Front Pharmacol
January 2025
Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.
Recent research has demonstrated the efficacy of traditional Chinese medicine (TCM) and its active compounds in combating cancer, leading to an increasing utilization of TCM as adjunctive therapy in clinical oncology. However, the optimal dosage of TCM remains unclear, and excessive use may result in cardiotoxicity, which poses a significant health concern for patients undergoing systemic treatment. Therefore, elucidating the underlying mechanisms of cytotoxicity induced by TCM can provide valuable insights for clinical management.
View Article and Find Full Text PDFPol J Pathol
January 2025
Clinical Laboratory, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China.
Fat mass and obesity-associated protein (FTO) was the earliest discovered m6A RNA demethylase. Previous studies have indicated that m6A modifications significantly influence the development, progression, and prognosis of various cancers. This study aimed to explore the role of FTO overexpression in colorectal cancer development, as well as its biological functions.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
Disuse bone loss is prone to occur in individuals who lack mechanical stimulation due to prolonged spaceflight or extended bed rest, rendering them susceptible to fractures and placing an enormous burden on social care; nevertheless, the underlying molecular mechanisms of bone loss caused by mechanical unloading have not been fully elucidated. Numerous studies have focused on the epigenetic regulation of disuse bone loss; yet limited research has been conducted on the impact of RNA modification bone formation in response to mechanical unloading conditions. In this study, we discovered that mA reader IGF2BP1 was downregulated in both osteoblasts treated with 2D clinostat and bone tissue in HLU mice.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Department of Environmental Health, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China; Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China. Electronic address:
Bisphenol F (BPF) has become a new risk factor for male semen quality, but its specific mechanism is still unclear. Therefore, this study explored the potential mechanism of BPF affecting male semen quality from the perspective of ferroptosis and m6A RNA methylation. In vivo experiments showed that BPF destroyed the structure of seminiferous tubules, reduced the layers of spermatogenic cells, and reduced semen quality in mice.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Sichuan University, College of Biomass Science and Engineering, College of Biomass Science and Engineering, Healthy Food Evaluation Research Cen, 610065, Chengdu, CHINA.
RNA modifications, such as N6-methylation of adenosine (m6A), serve as key regulators of cellular behaviors, and are highly dynamic; however, tools for dynamic monitoring of RNA modifications in live cells are lacking. Here, we develop a genetically encoded live-cell RNA methylation sensor that can dynamically monitor RNA m6A level at single-cell resolution. The sensor senses RNA m6A in cells via affinity-induced cytoplasmic retention using a nuclear location sequence-fused m6A reader.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!