Whether conifers can withstand environmental changes especially temperature fluctuations has been controversial. Epigenetic analysis may provide new perspectives for solving the issue. is an endangered gymnosperm species endemic to China. In this study, we have examined the genetic and epigenetic variations in its natural populations aiming to disentangle the synergistic effects of climate and soil on its population (epi)genetic differentiation by using amplified fragment length polymorphism (AFLP) and methylation-sensitive AFLP (MSAP) techniques. We identified 23 AFLP and 26, 7, and 5 MSAP outliers in . Twenty-one of the putative adaptive AFLP loci were found associated with climate and/or soil variables including precipitation, temperature, K, Fe, Zn, and Cu, whereas 21, 7, and 4 MSAP outliers were significantly related to precipitation of wettest month (Bio13), precipitation driest of month (Bio14), percent tree cover (PTC), and soil Fe, Mn, and Cu compositions. Total precipitation and precipitation in the driest seasons were the most influential factors for genetic and epigenetic variation, respectively. In addition, a high full-methylation level and a strong correlation between genetic and epigenetic variation were detected in . Climate is found of greater importance than soil in shaping adaptive (epi)genetic differentiation, and the synergistic effects of climate and climate-soil variables were also observed. The identified climate and soil variables should be considered when applying ex situ conservation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10493196 | PMC |
http://dx.doi.org/10.1002/ece3.10511 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Shanghai Advanced Research Institute Chinese Academy of Sciences: Chinese Academy of Sciences Shanghai Advanced Research Institute, Low-Carbon Conversion Science and Engineering Cente, 100 Haike Road, 201203, Shanghai, CHINA.
Renewable energy-driven electrochemical CO2 reduction has emerged as a promising technology for a sustainable future. However, achieving efficient production of storable liquid fuels at ampere-level current densities remains a significant hurdle in the large-scale implementation of CO2 electroreduction. Here we report a novel catalytic electrode comprising chlorine-doped SnO2 nanoflowers arrayed on the exterior of three-dimensional nickel hollow fibers.
View Article and Find Full Text PDFArch Toxicol
January 2025
Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
Snake envenomation presents a significant global health challenge, especially in rural areas of tropical and subtropical regions. Traditional antivenom therapies face limitations related to efficacy, availability, and specificity, prompting a need for novel approaches. Recent advancements in omics technologies, particularly metabolomics and proteomics, have enhanced our understanding of snake venom composition, toxicity, and potential therapeutic strategies.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Universidad Espíritu Santo, Samborondón, 092301, Ecuador.
Cancer therapy continues to face critical challenges, including drug resistance, recurrence, and severe side effects, which often compromise patient outcomes and quality of life. Exploring novel, cost-effective approaches, this review highlights the potential of Piper nigrum (black pepper) extract (PNE) as a complementary anticancer agent. Piper nigrum, a widely available spice with a rich history in traditional medicine, contains bioactive compounds such as piperine, which have demonstrated significant anticancer activities including cell cycle arrest, apoptosis induction, and inhibition of tumor growth and metastasis.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Emerging mercury-free ultraviolet (UV) sources, such as krypton chloride excimer (KrCl*) lamps and UV light emitting diodes (UV-LEDs), emit diverse wavelengths with distinct inactivation mechanisms. The combined application has the potential to improve disinfection effectiveness through synergism. In this study, a mini-fluidic photoreaction system equipped with a KrCl* lamp (222 nm) and a strip of UV-LEDs (275 nm) was developed, which could individually/simultaneously deliver accurate UV radiation(s) at 222 nm (0.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
Single-atom catalysts (SACs) have become the forefront and hotspot in energy storage and conversion research, inheriting the advantages of both homogeneous and heterogeneous catalysts. In particular, carbon-supported SACs (CS-SACs) are excellent candidates for many energy storage and conversion applications, due to their maximum atomic efficiency, unique electronic and coordination structures, and beneficial synergistic effects between active catalytic sites and carbon substrates. In this review, we briefly review the atomic-level regulation strategies for optimizing CS-SACs for energy storage and conversion, including coordination structure control, nonmetallic elemental doping, axial coordination design, and polymetallic active site construction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!