It can be assumed that the natural processes of selection and developmental condition in the animal provide the best prerequisites for embryogenesis resulting in pregnancy and subsequent birth of a healthy neonate. In contrast, circumventing the natural selection mechanisms and all developmental conditions in a healthy animal harbors the risk of counteracting, preventing or reducing the formation of embryos or substantially restricting their genesis. Considering these facts, it seems to be obvious that assisted reproductive techniques focusing on early embryonic stages serve an expanded and unselected germ cell pool of oocytes and sperm cells, and include the culture of embryos outside their natural habitat during and after fertilization for manipulation and diagnostic purposes, and for storage. A significant influence on the early embryonic development is seen in the extracorporeal culture of bovine embryos (in vitro) or stress on the animal organism (in vivo). The in vitro production per se and metabolic as well as endocrine changes in the natural environment of embryos represent adequate models and serve for a better understanding. The purpose of this review is to give a brief presentation of recent techniques aimed at focusing more on the complex processes in the Fallopian tube to contrast in vivo and in vitro prerequisites and abnormalities in early embryonic development and serve to identify potential new ways to make the use of ARTs more feasible.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10494886 | PMC |
http://dx.doi.org/10.1590/1984-3143-AR2023-0034 | DOI Listing |
J Assist Reprod Genet
January 2025
Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Clinical Sciences, Research Group Genetics, Reproduction and Development, Centre for Medical Genetics, Laarbeeklaan 101, 1090, Brussels, Belgium.
Purpose: Primary ovarian insufficiency (POI) is an important cause of female infertility, stemming from follicle dysfunction or premature oocyte depletion. Pathogenic variants in genes such as NOBOX, GDF9, BMP15, and FSHR have been linked to POI. NOBOX, a transcription factor expressed in oocytes and granulosa cells, plays a pivotal role in folliculogenesis.
View Article and Find Full Text PDFDev Biol
January 2025
Department of Bioengineering, University of Texas at Dallas, Richardson, TX; Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, TX. Electronic address:
During lung development, the embryonic airway originates as a wishbone-shaped epithelial tube, which undergoes a series of branching events to build the bronchial tree. This process depends crucially on cell proliferation and is thought to involve distinct branching modes: lateral branching, wherein daughter branches emerge along the length of a parent branch, and bifurcations, wherein the tip of a parent branch splits to form two new daughter branches. The developing airway is fluid-filled, and previous studies have shown that altered luminal pressure can influence rates of branching morphogenesis.
View Article and Find Full Text PDFCerebrovascular endothelial cell (EC) subtypes characterized by blood-brain barrier (BBB) properties or fenestrated pores are essential components of brain-blood interfaces, supporting brain function and homeostasis. To date, the origins and developmental mechanisms underlying this heterogeneous EC network remain largely unclear. Using single-cell-resolution lineage tracing in zebrafish, we discover a multipotent vascular niche at embryonic capillary borders that generates ECs with BBB or fenestrated molecular identity.
View Article and Find Full Text PDFPrimary cilia play a pivotal role in cellular signaling and development and disruptions in ciliary form and/or function leads to human ciliopathies. Here, we examine the role of , a key component of the intraflagellar transport-A complex, in mouse forebrain development using a null allele. Our findings reveal significant microcephaly in homozygous mutants is caused by disrupted neural progenitor proliferation and differentiation.
View Article and Find Full Text PDFiScience
January 2025
Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China.
Studies have shown that circRNAs play an important regulatory role in trophoblast function and embryonic development. Based on sequencing and functional experiments, we found that hsa_circ_0069443 can regulate the function of trophoblast cells, and its presence is found in the exosomes secreted by trophoblast cells. It is known that exosomes mediate the interaction between the uterus and embryo, which is crucial for successful pregnancy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!