The rice blast fungus Magnaporthe oryzae is a devastating plant pathogen that threatens rice production worldwide. Host-induced gene silencing (HIGS) has been effectively applied to study pathogenic gene function during host-microbe interactions and control fungal diseases in various crops. In this study, the HIGS system of M. oryzae was established using transgenic fungus expressing green fluorescence protein (GFP), KJ201::eGFP and 35S::dsRNAi plants, which produce small interfering RNAs targeting fungal genes. Through this system, we verified the HIGS of rice blast fungus quantitatively and qualitatively in both Arabidopsis and rice. Then, we showed that the HIGS of M. oryzae's pathogenic genes, including RGS1, MgAPT2 and LHS1, significantly alter its virulence. Both 35S::dsRNAi_MgAPT2 and 35S::dsRNAi_LHS1 plants showed a considerably enhanced fungal resistance, characterized by the formation of H O -containing defensive granules and induction of rice pathogenesis-related (PR) genes. In addition, the enhanced susceptibility of 35S::dsRNAi_RGS1 plants to blast fungus suggested a novel mode of action of this gene during fungal infection. Overall, the results of this study demonstrate that HIGS is a very effective and efficient biological tool not only to accurately characterize the functions of fungal pathogenic genes during rice-M. oryzae interactions, but also to control fungal disease and ensure a successful rice production.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.14721DOI Listing

Publication Analysis

Top Keywords

control fungal
12
blast fungus
12
host-induced gene
8
gene silencing
8
biological tool
8
magnaporthe oryzae
8
fungal disease
8
rice blast
8
rice production
8
interactions control
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!