AI Article Synopsis

  • Silver nanoparticles (Ag NPs) were synthesized using Osbeckia stellata leaves, highlighting the benefits of an eco-friendly and cost-effective approach through green synthesis.
  • Characterization techniques such as UV-Vis spectroscopy and SEM showed that the Ag NPs have a spherical shape and are in the nanometer size range, confirming their effective biosynthesis.
  • The study found that these Ag NPs demonstrate strong antioxidant, antidiabetic, cytotoxic, and antimicrobial properties, indicating their potential applications in biomedical and pharmacological fields.

Article Abstract

Silver nanoparticles (Ag NPs) via green synthesis using medicinal plants have been widely used in natural product research due to the economical and eco-friendly properties of NPs. The plant-derived Ag NPs biosynthesis comprises the interaction between silver nitrate (precursor) and bioactive components of plant extract (reducing agents). In this work, Ag NPs were biosynthesized using Osbeckia stellata leaves aqueous extract. Characterization of Ag NPs was done by using ultraviolet-visible absorption (UV-Vis) spectroscopy, dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray analysis (EDX). Further, antioxidant, antidiabetic, cytotoxicity, and antimicrobial activities were evaluated to establish the pharmacological properties of Ag NPs. UV-Vis spectroscopy and FTIR showed an absorption peak of Ag NPs due to the surface plasmonic resonance. In contrast, the particle size in the nanometer range was analyzed by XRD and DLS. The size of the particle was confirmed by the SEM, TEM, and EDX in the nanometer range. This study showed the spherical shape and crystalline nature of NPs. Zeta potential was used to determine the stability of Ag NPs. Biosynthesized Ag NPs showed significantly potent antioxidant, antidiabetic, and cytotoxicity activity. Ag NPs also showed effectiveness against gram-positive (Escherichia coli) and gram-negative (Staphylococcus aureus) bacteria in the antimicrobial activity study. The result concluded that these Ag NPs might be used in biomedical and pharmacological fields.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bab.2512DOI Listing

Publication Analysis

Top Keywords

antioxidant antidiabetic
12
antidiabetic cytotoxicity
12
nps
12
silver nanoparticles
8
osbeckia stellata
8
aqueous extract
8
green synthesis
8
properties nps
8
nps biosynthesized
8
uv-vis spectroscopy
8

Similar Publications

For the first time, critical review on R. Br. (Boraginaceae) is established.

View Article and Find Full Text PDF

Diabetes mellitus is a chronic disease characterized by metabolic defects, including insulin deficiency and resistance. Individuals with diabetes are at increased risk of developing cardiovascular complications, such as atherosclerosis, coronary artery disease, and hypertension. Conventional treatment methods, though effective, are often challenging, costly, and may lead to systemic side effects.

View Article and Find Full Text PDF

It is crucial to investigate new anti-diabetic agents and therapeutic approaches targeting molecules in potential signaling pathways for the treatment of Type 2 diabetes mellitus (T2DM). The objective of the study was to investigate the total phenolic content, antioxidant capacity, α-glucosidase, and α-amylase inhibitory activities of Bolanthus turcicus (B. turcicus), as well as their cytotoxic, anti-adipogenic, anti-diabetic, apoptotic, and anti-migration potential on adipocytes.

View Article and Find Full Text PDF

The use of fish rest raw material for the production of fish protein hydrolysates (FPH) through enzymatic hydrolysis has received significant interest in recent decades. Peptides derived from fish proteins are known for their enhanced bioactivity which is mainly influenced by their molecular weight. Studies have shown that novel technologies, such as high-pressure processing (HPP), can effectively modify protein structures leading to increased biological activity.

View Article and Find Full Text PDF

Algae, widely as a valuable marine biomass, are appreciated globally for their unique chemical compositions and exceptional nutritional benefits. Scientists are increasingly focusing on valorizing algae biomass to recover polysaccharides and bioactive extracts. Conventional methods commonly used to extract bioactive compounds have several limitations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!