Anatase-cellulose acetate for reinforced desalination membrane with antibacterial properties.

BMC Chem

Chemical Engineering and Pilot Plant Department, Engineering Research and Renewable Energy Institute, National Research Centre, Cairo, 12622, Egypt.

Published: September 2023

This study aimed to prepare antifouling and highly mechanical strengthening membranes for brackish and underground water desalination. It was designed from cellulose acetate (CA) loaded anatase. Anatase was prepared from tetra-iso-propylorthotitanate and carboxymethyl cellulose. Different concentrations of anatase (0.2, 0.3, 0.5, 0.6, 0.7, and 0.8)% were loaded onto CA during the inversion phase preparation of the membranes. The prepared membranes were characterized using Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM & EDX), mechanical properties, swelling ratio, porosity determination, and ion release. The analysis confirmed the formation of anatase on the surface and inside the macro-voids of the membrane. Furthermore, anatase loading improved the CA membrane's mechanical properties and decreased its swelling and porosity rate. Also, CA-loaded anatase membranes displayed a significant antibacterial potential against Gram-positive and Gram-negative bacteria. The results showed that the salt rejection of the CA/anatase films as-prepared varies considerably with the addition of nanomaterial, rising from 46%:92% with the prepared membranes under the 10-bar operation condition and 5 g/L NaCl input concentration. It can be concluded that the prepared CA-loaded anatase membranes have high mechanical properties that are safe, economical, available, and can stop membrane biofouling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10496367PMC
http://dx.doi.org/10.1186/s13065-023-01013-1DOI Listing

Publication Analysis

Top Keywords

mechanical properties
12
prepared membranes
8
ca-loaded anatase
8
anatase membranes
8
anatase
7
membranes
6
anatase-cellulose acetate
4
acetate reinforced
4
reinforced desalination
4
desalination membrane
4

Similar Publications

Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.

View Article and Find Full Text PDF

Fluid flow across a Riga Plate is a specialized phenomenon studied in boundary layer flow and magnetohydrodynamic (MHD) applications. The Riga Plate is a magnetized surface used to manipulate boundary layer characteristics and control fluid flow properties. Understanding the behavior of fluid flow over a Riga Plate is critical in many applications, including aerodynamics, industrial, and heat transfer operations.

View Article and Find Full Text PDF

Obesity is a major public health issue worldwide. Despite various approaches to weight loss, the most effective technique for reducing obesity, as well as diabetes and associated diseases, is bariatric surgery. Increasingly, young women without children are undergoing bariatric surgery, vertical sleeve gastrectomy (VSG) being the most common procedure nowadays.

View Article and Find Full Text PDF

Da Vinci's friction for granular media.

Sci Rep

January 2025

Civil and Environmental Engineering Department, Faculty of Engineering Sciences, Ben- Gurion University of the Negev, Beer-Sheva, Israel.

The concept of friction was integrated into the broader field of tribology in the 20th century. Here, we revive the older friction coefficient concept and show that it is the defining parameter for a family of granular materials. We show, for the first time, that kinetic friction coefficients of such systems can be described as a function of the lubricating fluid and the shape of the granules, without any fitting parameters.

View Article and Find Full Text PDF

Advancements in microalgal biomass conversion for rubber composite applications.

Sci Rep

January 2025

Hydrobiology Lab, Water Pollution Research Department, National Research Centre, Dokki, Giza, 12622, Egypt.

Carbon black (CB) as rubber reinforcement has raised environmental concerns regarding this traditional petroleum-based filler, which is less susceptible to biodegradability. Although it has great reinforcing properties, the production technique is no longer sustainable, and its cost increases regularly. For these reasons, it is wise to look for sustainable replacement materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!