Background: The murine leukemia virus (MLV) has been a powerful model of pathogenesis for the discovery of genes involved in cancer. Its splice donor (SD')-associated retroelement (SDARE) is important for infectivity and tumorigenesis, but the mechanism remains poorly characterized. Here, we show for the first time that P50 protein, which is produced from SDARE, acts as an accessory protein that transregulates transcription and induces cell transformation.
Results: By infecting cells with MLV particles containing SDARE transcript alone (lacking genomic RNA), we show that SDARE can spread to neighbouring cells as shown by the presence of P50 in infected cells. Furthermore, a role for P50 in cell transformation was demonstrated by CCK8, TUNEL and anchorage-independent growth assays. We identified the integrase domain of P50 as being responsible for transregulation of the MLV promoter using luciferase assay and RTqPCR with P50 deleted mutants. Transcriptomic analysis furthermore revealed that the expression of hundreds of cellular RNAs involved in cancerogenesis were deregulated in the presence of P50, suggesting that P50 induces carcinogenic processes via its transcriptional regulatory function.
Conclusion: We propose a novel SDARE-mediated mode of propagation of the P50 accessory protein in surrounding cells. Moreover, due to its transforming properties, P50 expression could lead to a cellular and tissue microenvironment that is conducive to cancer development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10496198 | PMC |
http://dx.doi.org/10.1186/s12977-023-00631-w | DOI Listing |
Alzheimers Res Ther
January 2025
Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
Background: PSEN1, PSEN2, and APP mutations cause Alzheimer's disease (AD) with an early age at onset (AAO) and progressive cognitive decline. PSEN1 mutations are more common and generally have an earlier AAO; however, certain PSEN1 mutations cause a later AAO, similar to those observed in PSEN2 and APP.
Methods: We examined whether common disease endotypes exist across these mutations with a later AAO (~ 55 years) using hiPSC-derived neurons from familial Alzheimer's disease (FAD) patients harboring mutations in PSEN1, PSEN2, and APP and mechanistically characterized by integrating RNA-seq and ATAC-seq.
Nat Med
January 2025
Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
Nearly all pancreatic adenocarcinomas (PDAC) are genomically characterized by KRAS exon 2 mutations. Most patients with PDAC present with advanced disease and are treated with cytotoxic therapy. Genomic biomarkers prognostic of disease outcomes have been challenging to identify.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Anhui University of Chinese Medicine, Hefei, Anhui 230012, China.
Objective: In China, Chinese herbal medicines (CHMs) have been widely used in the treatment of psoriatic arthritis (PsA), showing great therapeutic effects in clinical practice. However, due to the great heterogeneity of PsA and the diversity of CHM combination patterns, there is little high-level evidence-based medical research on the treatment of PsA with CHMs. This study aims to explore the beneficial effects of CHMs on the immune inflammation in PsA and its specific mechanism.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
Background: With a rapidly aging population, South Korea anticipates a surge in Alzheimer disease (AD). However, the genetic basis of AD in Koreans is not well understood.
Method: We sequenced the genomes of 3,540 Koreans (1,583 AD cases and 1,957 controls) older than age 60 and performed a genome-wide association study (GWAS) of AD using logistic regression models that included covariates for age, sex, five ancestry principal components, and an empirical genetic relationship matrix.
Nat Ecol Evol
January 2025
ARC Centre for Plant Success in Nature & Agriculture, Hawkesbury Institute for the Environment, Western Sydney University, Sydney, New South Wales, Australia.
Wind is an important ecological factor for plants as it can increase evapotranspiration and cause dehydration. However, the impact of wind on plant hydraulics at a global scale remains unclear. Here we compiled plant key hydraulic traits, including water potential at 50% loss of hydraulic conductivity (P), xylem-specific hydraulic conductivity (K), leaf area to sapwood area ratio (A/A) and conduit diameter (D) with 2,786 species-at-site combinations across 1,922 woody species at 469 sites worldwide and analysed their correlations with wind speed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!