Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Downstaging of hepatocellular carcinoma (HCC) makes it possible for patients beyond the criteria to have the chance of liver transplantation (LT) and improved outcomes. Thus, a procedure to predict the prognosis of the treatment is an urgent requisite. The present study aimed to construct a comprehensive framework with clinical information and radiomics features to accurately predict the prognosis of downstaging treatment.
Methods: Specifically, three-dimensional (3D) tumor segmentation from contrast-enhanced computed tomography (CT) is employed to extract spatial information of the lesions. Then, the radiomics features within the segmented region are calculated. Combining radiomics features and clinical data prompts the development of feature selection to enhance the robustness and generalizability of the model. Finally, we adopt the support vector machine (SVM) algorithm to establish a classification model for predicting HCC downstaging outcomes.
Results: Herein, a comparative study was conducted on three different models: a radiomics features-based model (R model), a clinical features-based model (C model), and a joint radiomics clinical features-based model (R-C model). The average accuracy of the three models was 0.712, 0.792, and 0.844, and the average area under the receiver-operating characteristic (AUROC) of the three models was 0.775, 0.804, and 0.877, respectively.
Conclusions: The novel and practical R-C model accurately predicted the downstaging outcomes, which could be utilized to guide the HCC downstaging toward LT treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10496191 | PMC |
http://dx.doi.org/10.1186/s12885-023-11386-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!