Background: Anthropogenic activities are causing unprecedented loss of genetic diversity in many species. However, the effects on genetic diversity from large-scale grafting onto wild plants of crop species are largely undetermined. Iron walnut (Juglans sigillata Dode) is a deciduous nut tree crop endemic to southwestern China with a long history of cultivation. Due to the rapid expansion of the walnut industry, many natural populations are now being replaced by cultivars grafted onto wild rootstocks. However, little is known about the potential genetic consequences of such action on natural populations.
Results: We sampled the scion and the rootstock from each of 149 grafted individuals within nine wild populations of J. sigillata from Yunnan Province which is the center of walnut diversity and cultivation in China, and examined their genetic diversity and population structure using 31 microsatellite loci. Scions had lower genetic diversity than rootstocks, and this pattern was repeated in seven of the nine examined populations. Among those seven populations, AMOVA and clustering analyses showed a clear genetic separation between all rootstocks and all scions. However, the two remaining populations, both from northern Yunnan, showed genetic similarity between scions and rootstocks, possibly indicating that wild populations here are derived from feralized local cultivars. Moreover, our data indicated probable crop-to-wild gene flow between scions and rootstocks, across all populations.
Conclusions: Our results indicate that large-scale grafting has been causing genetic diversity erosion and genetic structure breakdown in the wild material of J. sigillata within Yunnan. To mitigate these effects, we caution against the overuse of grafting in wild populations of iron walnut and other crop species and recommend the preservation of natural genotypes through in situ and ex situ conservation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10498525 | PMC |
http://dx.doi.org/10.1186/s12870-023-04428-z | DOI Listing |
Exp Appl Acarol
January 2025
Laboratorio de Vectores y Enfermedades Transmitidas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto, Uruguay.
Babesia species (Piroplasmida) are hemoparasites that infect erythrocytes of mammals and birds and are mainly transmitted by hard ticks (Acari: Ixodidae). These hemoparasites are known to be the second most common parasites infecting mammals, after trypanosomes, and some species may cause malaria-like disease in humans. Diagnosis and understanding of Babesia diversity increasingly rely on genetic data obtained through molecular techniques.
View Article and Find Full Text PDFGenes Genomics
January 2025
Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan, 32439, Republic of Korea.
Background: Soil salinity has been a serious threat to agricultural production worldwide, including soybeans. Glycine soja, the wild ancestor of cultivated soybeans, harbors high genetic diversity and possesses attractive rare alleles.
Objective: We conducted a transcriptome analysis of G.
Genes Genomics
January 2025
Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
Background: The clinical course of high-risk neuroblastoma patients remains suboptimal, and the dynamic and reversible nature of cellular senescence provides an opportunity to develop new therapies.
Objective: This study aims to identify unique markers of cellular senescence in neuroblastoma and to explore their clinical significance.
Methods: The impact of multiple genetic regulatory mechanisms on cellular senescence-associated genes (CSAGs) was first assessed.
Theor Appl Genet
January 2025
USDA, ARS, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA.
Complex traits influenced by multiple genes pose challenges for marker-assisted selection (MAS) in breeding. Genomic selection (GS) is a promising strategy for achieving higher genetic gains in quantitative traits by stacking favorable alleles into elite cultivars. Resistance to Fusarium oxysporum f.
View Article and Find Full Text PDFSci Rep
January 2025
Yunnan Provincial Key Laboratory of Children's Major Diseases Research, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China.
This study focused on the relationships among gut microbiota, plasma protein ratios, and tuberculosis. Given the unclear causal relationship between gut microbiota and tuberculosis and the scarcity of research on relevant plasma protein ratios in tuberculosis, Mendelian randomization analysis (MR) was employed for in-depth exploration. By analyzing the GWAS data of individuals with European ancestry (the FinnGen dataset included 409,568 controls and 2613 cases), using the two-sample MR method, we focused on evaluating the impact of immunocyte-mediated gut microbiota on tuberculosis and the associations between 2821 plasma protein-to-protein ratios and tuberculosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!