As a non-metallic organic semiconductor, graphitic carbon nitride (g-CN) has received much attention due to its unique physicochemical properties. However, the photocatalytic activity of this semiconductor faces challenges due to factors such as low electronic conductivity and limited active sites provided on its surface. The morphology and structure of g-CN, including macro/micro morphology, crystal structure and electronic structure can affect its catalytic activity. Non-metallic heteroatom doping is considered as an effective method to tune the optical, electronic and other physicochemical properties of g-CN. Here, we synthesized non-metal-doped highly crystalline g-CN by one-pot calcination method, which enhanced the photocatalytic activity of g-CN such as mesoporous nature, reduced band gap, wide-range photousability, improved charge carrier recombination, and the electrical conductivity was improved. Hence, the use of low-power white-LED-light illumination (λ ≥ 420 nm) and ultrasound (US) irradiation synergistically engendered the Methylene Blue (MB) mineralization efficiency elevated to 100% within 120 min by following the pseudo-first-order mechanism under the following condition (i.e., pH 11, 0.75 g L of O-doped g-CN and S-doped g-CN, 20 mg L MB, 0.25 ml s O, and spontaneous raising temperature). In addition, the rapid removal of MB by sonophotocatalysis was 4 times higher than that of primary photocatalysis. And radical scavenging experiments showed that the maximum distribution of active species corresponds to superoxide radical [Formula: see text]. More importantly, the sonophotocatalytic degradation ability of O-doped g-CN and S-doped g-CN was remarkably sustained even after the sixth consecutive run.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10497575 | PMC |
http://dx.doi.org/10.1038/s41598-023-41473-y | DOI Listing |
ACS Omega
December 2024
Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.
This study investigates whether 17β-estradiol (E2), a natural estrogen and one of the endocrine-disrupting chemicals responsible for water pollution, can be oxidatively decomposed under simulated solar light using a composite of tin oxide nanoparticles and graphene-like carbon nitride (g-CN) as a photocatalyst. The composite photocatalyst was prepared by heating a mixture of urea and tin acetate. FT-IR measurements revealed that g-CN possesses structural units similar to g-CN, a well-studied graphite-like carbon nitride.
View Article and Find Full Text PDFJ Environ Manage
December 2024
School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
Researchers in the field of photocatalysis are interested in finding a solution to the problem of charge transfer and recombination in photodegradation mechanisms. The ideal photoactive catalyst would be inexpensive, environmentally friendly, easily manufactured, and highly efficient. Graphitic carbon nitride (g-CN) and metal oxide (MOx) based nanocomposites (g-CN/MOx) are among the photocatalysts that provide the best results in terms of charge transfer capacity, redox capabilities, and charge recombination inhibition.
View Article and Find Full Text PDFBiomaterials
May 2025
Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea. Electronic address:
Bone hemorrhage, infection, and large bone defects following surgical treatment of traumatic bone injury have raised potential concerns, underscoring the urgent need to develop multifunctional therapeutic platforms that can effectively address traumatic bone regeneration. Advancements in three-dimensional (3D) printing technology have propelled the development of several engineering disciplines, such as tissue engineering. Nevertheless, 3D-printed frameworks with conventional materials often lack multifunctional capabilities to promote specific activities for diverse regeneration purposes.
View Article and Find Full Text PDFSmall
November 2024
Department of Physics, City University of Hong Kong, Hong Kong, 999077, China.
Deposition of low-cost, efficient, and environmentally friendly graphitic carbon nitride (g-CN) films as photoanodes is a crucial step for constructing photoelectrochemical (PEC) cells and exploring their PEC performance. Currently, the improvement of the photocurrent density of g-CN films is badly needed for their practical applications in PEC water splitting. Enhancing the g-CN crystallinity by optimizing their synthesis conditions only through screening appropriate reactant precursors is insufficient for this purpose.
View Article and Find Full Text PDFJ Phys Chem Lett
November 2024
Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion and Synergetic Innovation Centre of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
The design and development of highly active non-noble metal electrocatalysts for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are crucial for metal-air batteries. In this work, the electrocatalytic performance of different -block metal (PM = Sn, Sb, Pb and Bi) atoms embedded in the g-CN monolayer (PM@g-CN, = 1-3) for the OER and ORR was systematically investigated by density functional theory (DFT). The strong interaction between PM atoms and g-CN substrates indicates the good stability of PM@g-CN catalysts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!