The typical river-lake ecotone (tail end area) of Poyang Lake, which is a sensitive area and prone to outbreaks of cyanobacteria bloom, is vulnerable to frequent human activities. To explore the diversity of phytoplankton community structure and the relevant driving mechanism in the typical river lake junction area of Poyang Lake, the water quality and phytoplankton at seven sampling points in the typical river lake junction area of Poyang Lake, at six sampling points in the middle section of Poyang Lake River, and at one sampling point in the main lake area were investigated in the field from 2019 to 2020 (dry season), April (flood season), July (wet season), and October (recession period). The results showed that there were seven phyla and 64 genera of phytoplankton in the typical river-lake ecotone of Poyang Lake, and the biomass and relative abundance of phytoplankton were dominated by diatoms and cyanobacteria. The biomass and abundance in the east of the typical river-lake ecotone of Poyang Lake were generally higher than those in the west, and the biomass and abundance in the river-lake ecotone were higher than those in the middle of the river. The dominant degree of cyanobacteria in the lake area and the river-lake ecotone was large, and the dominant degree of diatoms in the middle section of the river was large. The Monte Carlo test results showed that total nitrogen (TN), total phosphorus (TP), orthophosphate phosphorus (PO-P), water depth (WD), water temperature (WT), and transparency (SD) were significantly related environmental factors affecting the distribution of the phytoplankton community. Redundancy analysis results showed that the typical river-lake ecotone in the west of Poyang Lake was highly affected by the hydration factors (TN, TP, and PO-P), and the hydrological factors (WT, WD, and SD) in the typical river-lake ecotone in the east were highly significant. The impact factors of phytoplankton in the typical river-lake ecotone of Poyang Lake were seasonal, being greatly affected by hydration factors in winter and hydrological factors in summer.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.202211066DOI Listing

Publication Analysis

Top Keywords

river-lake ecotone
36
poyang lake
32
typical river-lake
28
lake
13
phytoplankton typical
12
area poyang
12
ecotone poyang
12
typical
9
river-lake
9
ecotone
9

Similar Publications

The typical river-lake ecotone (tail end area) of Poyang Lake, which is a sensitive area and prone to outbreaks of cyanobacteria bloom, is vulnerable to frequent human activities. To explore the diversity of phytoplankton community structure and the relevant driving mechanism in the typical river lake junction area of Poyang Lake, the water quality and phytoplankton at seven sampling points in the typical river lake junction area of Poyang Lake, at six sampling points in the middle section of Poyang Lake River, and at one sampling point in the main lake area were investigated in the field from 2019 to 2020 (dry season), April (flood season), July (wet season), and October (recession period). The results showed that there were seven phyla and 64 genera of phytoplankton in the typical river-lake ecotone of Poyang Lake, and the biomass and relative abundance of phytoplankton were dominated by diatoms and cyanobacteria.

View Article and Find Full Text PDF

Responses of soil phosphorus cycling and bioavailability to plant invasion in river-lake ecotones.

Ecol Appl

June 2023

The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan, 430072, China.

The invasion of exotic plants in the river-lake ecotone has seriously affected the nutrient cycling processes in wetland soil. The South American species Alternanthera philoxeroides (Mart.) Griseb.

View Article and Find Full Text PDF

Response of spatio-temporal changes in sediment phosphorus fractions to vegetation restoration in the degraded river-lake ecotone.

Environ Pollut

September 2022

The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan, 430072, China.

Phosphorus (P) is an essential element in the ecosystem and the cause of the eutrophication of rivers and lakes. The river-lake ecotone is the ecological buffer zone between rivers and lakes, which can transfer energy and material between terrestrial and aquatic ecosystems. Vegetation restoration of degraded river-lake ecotone can improve the interception capacity of P pollution.

View Article and Find Full Text PDF

Aquatic vegetation in lakes along the middle and lower reaches of the Yangtze River has been seriously degraded by human disturbances such as river-lake disconnection and water eutrophication. Chaohu Lake is a typical lake with reservoir-like water-level fluctuations (WLFs). Since a sluice was built in 1962, the coverage of aquatic vegetation in Chaohu Lake has been very low (0.

View Article and Find Full Text PDF

Bacterial Stimulation in Mixed Cultures of Bacteria and Organic Carbon from River and Lake Waters.

Microb Ecol

October 1999

Task Group on Land Water Trophic Exchanges (GRETI), University of Savoy, Campus Scientifique, F-73376 Le Bourget du Lac, France

Abstract Interactions between natural bacterial assemblages and dissolved organic carbon (DOC) were investigated in two complementary batch experiments. In the first, a positive relationship was found between the proportion of electron transport system (ETS) active bacteria and the diversity of DOC in microcosms enriched with an increasing number of organic substrates. In a second experiment, bacterial and nutrient dynamics were measured in microcosms with natural bacterial populations and organic matter from rivers and lakes of different trophic levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!