Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Chemical oxygen demand (COD) is an important index used to assess organic oxygen consumption pollution. To explore COD composition in the natural water in Baiyangdian Lake, the main composition, source, and influencing factors of oxygen-consuming organic substances in the water body were revealed through physical continuous classification, three-dimensional fluorescence, and other methods. The results showed that the COD of the two waters was affected by dissolved organic substances (protein-like and humus-like organic matters) with size of less than 220 nm (59%-93%), and inorganic substances had little effect on COD. The source of organic matter in overlying water was primarily affected by endophytic vegetation decomposition, sediment release (the release flux of TOC was in the range of 1.55-2.28 mg·(m·d)), and other endogenous sources (biological index>0.8), as well as by land-based sources such as reed platform and artificial pollution (1.4
Download full-text PDF
Source
http://dx.doi.org/10.13227/j.hjkx.202208155 DOI Listing Publication Analysis
Top Keywords
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!